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ABSTRACT

For a small number of Salmonella serovars that typically produce serious systemic diseases in man and 
animals, and which resemble human typhoid, persistent but intermittent post-convalescence shedding 
is central to the epidemiology of the infection. Persistent infection occurs despite high levels of circulating 
specific IgG. We have reviewed our understanding of the biological basis of persistence in S. Typhi in man, 
S. Gallinarum and S. Pullorum in chickens comparing with S. Typhi murium persistence in mice, with some 
reference to S. Dublin in cattle and S. Abortusovis in sheep and goats. Persistence appears to involve infection 
of macrophages primarily in the spleen and liver with shedding either from the gall bladder and gut in man or 
the reproductive tract in poultry and cattle and sheep. There is clearly a host-genetic element involved in mice 
and poultry albeit much less clear in man. The evidence indicates that the pathogens are able to modulate 
the immune response for their own benefit away from a clearing Th1-type response towards and anti-
inflammatory (Th2) response. There is also some evidence to suggest that modulation of macrophages by the 
pathogens causes a switch from a M1 to M2 phenotype. The microbiological basis for the modulation has not 
yet been elucidated. Some experimental work suggests that cytokine therapy may be used to re-modulate the 
response back to a more-inflammatory response associated with increased tissue clearance.
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Introduction
Typhoid and typhoid-like diseases of man and animals remain 

major threats to public and animal health. Although the majority of 
the more than 2,500 serotypes of Salmonella enterica subsp enterica 
are associated with, in most cases, a self-limiting gastro-enteritis, a 
small number of serovars typically produce severe systemic disease 
in a narrow range of host species. These include S. Typhi in man, S. 
Gallinarum and S. Pullorum in poultry, S. Dublin in cattle and S. Abor-
tusovis in sheep and goats where the patterns of infection resemble 
each other. One of the key characteristic features of typhoid serovars 
is asymptomatic persistent infections in a proportion of convales-
cents [1-3]. This includes S. Typhimurium which, in addition to being 
one of the most frequently isolated serovars from human food-poi-
soning, also shows chronic, persistent infection in resistant lines of 
mice. In this review we will explore the characteristics common to 

persistent infection in the human and avian serovars, since they re-
semble each other most closely. The murine S. Typhimuirum model 
will be used for comparison because the availability of immunological 
reagents has enabled a profound understanding of the nature of mu-
rine typhoid. In this review we will use the term persistent infection 
to avoid confusion with “the carrier state” which is also frequently 
used to describe intestinal colonisation. Other serovars produce se-
vere, systemic typhoid diseases in different host species, including 
S. Paratyphi, S. Sendai, S. Choleraesuis, and S. Abortusequi, but their 
involvement in persistent infection is poorly documented and these 
will not be dealt with further.

Public Health and Economic Significance
Although human typhoid, caused primarily by S. Typhi, is con-

trolled in many countries through improved clean water supply, hy-
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giene measures and sewage disposal, it is still a cause of morbidity 
and mortality in Southeast Asia, Africa and South America with an 
estimated 20 million cases worldwide and 220,000 deaths [4-6]. 
Treatment is complicated by increasing antibiotic resistance with 
60% of strains resistant to more than 4 antibiotics [7-9]. 2-3% of con-
valescents become persistently infected and shedders, sometimes for 
decades [1,10-12], although a high proportion never experience acute 
infection and one study in India suggests that <10% of the normal 
heathy population may show evidence of S. Typhi in their tissues [13]. 
The avian typhoid pathogens S. Gallinarum and S. Pullorum, biotypes 
of the same serovar, are major causes of disease and mortality world-
wide especially in small back-yard flocks and in countries where high 
ambient temperature results in open-sided poultry housing, allowing 
environmental contamination to occur. Data on the economic effects 
of the disease are difficult to obtain but mortality can reach 90% de-
pending on bacterial strain and host genetic background. Other sero-
vars of significance in agriculture include S. Dublin, which is the most 
frequently isolated Salmonella from dairy cattle with prevalence val-
ues of between 16-73% in US dairy herds. It causes diarrhea in calves 
and adults and severe systemic disease in cows accompanied by abor-
tion with mortality occurring in up to 30% calves in infected herds 
[14,15]. It is also an important zoonotic pathogen. S. Abortusovis is the 
serotype most frequently associated with ovine and caprine salmo-
nellosis and remains an important cause of economic loss in Europe 
and the Middle East [16,17]. Both these serovars may also localise in 
the joints and lungs causing pneumonia.

The Clinical Picture in Acute and Persistent Infection 
Acute Infection

To understand the basis of persistent infection we must also un-
derstand the course of the more frequently encountered acute form 
of the disease. For the three model serovars covered in detail in this 
review; namely S. Typhi, S. Gallinarum/Pullorum and S. Typhimurium, 
the course of infection is remarkably similar. S. Typhi, S. Gallinarum 
and S. Typhimurium are able to infect animals of all ages. By contrast, 
S. Pullorum produces clinical disease almost exclusively in very young 
birds usually after horizontal transfer in the hatchery. All involve oral 
infection, invasion from the alimentary tract, probably mainly via 
lymphoid tissue including the Peyer’s Patch and, in poultry, the cae-
cal tonsil [18] and probably via M cells [19]. In mice translocation to 
the lymph nodes involves CD-18-expressing macrophages [20] and, 
in all species, from there to the liver, spleen, bone marrow and gall 
bladder [1,21,22]. Multiplication occurs in the monocyte-macrophage 
cell types which is followed, during clinical disease, by dispersal to 
lymphoid tissue in the small intestine from where they are excreted 
in the faeces. Macrophages are central to the control of Salmonella via 
the formation of granulomata [23]. 

The bacteria may proliferate within the Salmonella-containing 
vacuole (SCV) through the activity of proteins encoded by genes 
found in Salmonella pathogenicity island-2 (SPI-2) [24,25] and which 

may lead to cell death [26] or may induce pro-inflammatory medi-
ators [27] which can lead to bacterial killing [26,28]. Control of Sal-
monella in macrophages is dynamic, with the involvement of reactive 
oxygen species in acute infections and reactive nitrogen species in 
more chronic infections [29]. Localisation in the lymphoid tissues in 
the small intestine leads to shedding in the faeces and may lead to 
occasional intestinal perforation near the ileo-caecal junction in hu-
mans, while urinary tract infection can also occur but is less frequent. 
Unlike S. Typhi and S. Gallinarum, S. Typhi murium is also able to colo-
nise the alimentary tract of animals very well, which results in carcass 
contamination and entry into the human food chain resulting in food 
poisoning. Immunological control of infection requires cellular and 
antibody responses [30,31]. The production of IFNγ by natural killer 
cells or by CD8 T cells is important in early host-protection. Clearance 
of the infection requires CD4 T cells and appears to be dependent on 
IFNγ [32,33].

Persistent Infection

In human typhoid the gall bladder is frequently infected and is 
associated with faecal shedding although persistence can occur fol-
lowing cholecystectomy and the infection rate of the liver in healthy 
Indians has been found to be higher than the gall bladder [34]. Al-
though humans are outbred, the low specific frequency of persistence 
suggests a host genetic element in susceptibility to this characteristic. 
Under experimental conditions, S. Gallinarum only shows long-term 
persistence in lines of chicken which are relatively resistant (Sal1R 
phenotype) to systemic disease with the pathogen localising in the liv-
er and spleen. In susceptible chicken lines infection leads inevitably to 
severe acute infection and death, depending on infection dose. From 
the point of view of infection biology, S. Pullorum may be regarded as 
a less pathogenic biotype of S. Gallinarum and produces persistent 
infection in Salmonella susceptible (Sal1S phenotype) chickens. The 
bacteria localise in the spleen and liver and gradually decline in num-
bers in both sexes until, in females, birds reach sexual maturity at 16-
18 weeks of age. At this point the change in hormone balance results 
in suppression in T cell activity accompanied by bacterial transloca-
tion to the reproductive tract and transfer to the progeny via the egg 
and up to 10% of eggs may be infected. In males’ bacterial numbers 
continue to decline and clear at 20-25 weeks of age. 

In S. Typhi and S. Gallinarum, colonisation of the alimentary tract 
is poor and only associated with clinical disease. In slc11a1-/- mice, S. 
Typhi murium produces a typical acute typhoid. In slc11a1+/+ mice 
persistent infection occurs with the bacteria localised in the liver, 
spleen and mesenteric lymph nodes with occasional isolation from 
the gall bladder [35-38] associated with faecal shedding for, in one 
case, more than 365 days [33]. The infection biology of S. Dublin and 
S. Abortusovis is much less studied but persistence has been associat-
ed with infection of the liver, spleen and gall bladder in S. Dublin with 
persistent shedding for up to one year in a calf showing an infected 
gall bladder [39].
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Microbiological Features Contributing to Persistence
The members of this group of serovars associated with ty-

phoid-like infections, and for which whole genome analyses have 
been carried out, are characterised by a reduced number of func-
tional Open Reading Frames (ORF) undoubtedly indicating that the 
environment in the phagolysosome is nutritionally a very favourable 
environment. S. Typhi has 210 pseudogenes, S. Gallinarum 210-240 
and S. Pullorum 231-263 depending on the strain [40-42] compared 
with S. Typhimurium which has 25. Pseudogenes occur in fimbrial 
gene clusters and in some nutritional pathways such as the 1,2-pro-
panediol degradation pathway. This involves tetrathionate as a termi-
nal electron acceptor and requires cobalamin and the combination of 
these operons are thought to be required for intestinal colonisation. 
However, there are no genomic features that appear to be uniquely 
characteristic of persistence as opposed to acute infection, both in-
volving intra-macrophage multiplication and survival. Salmonella 
Pathogenicity Island-2 (SPI-2) is required for both acute and per-
sistent infection but it is difficult to tease apart its role in both. It is 
thought that persistence is associated with accumulation of neutral 
mutations [43-45]. There is also no particularly strong evidence that 

strains associated with persistence are any different to the wider se-
rovar population.

Immunological Features of Persistence
We have a fairly detailed understanding of the immune response 

to acute Salmonella infection, primarily from S. Typhimurium in-
fection in mice. Studies have indicated the critical role of CD4+ Th1 
lymphocytes and IL-12 in controlling acute infections in the liver and 
spleen [46]. Th1-lymphocyte-dependent production of IFNγ [47,48], 
leads to increases in reactive oxygen species in macrophages counter-
ing acute infection and reactive nitrogen species in the more chron-
ic phase of infection [28]. Much less is known of the characteristics 
of the immune response to the typhoid Salmonella serovars during 
persistent infection and most of this also comes from work with S. 
Typhi murium in the mouse and more recently with additional data 
from studies on S. Pullorum and S. Gallinarum in the chicken. From 
the studies with these serovars, evidence has accumulated to indi-
cate that the pathogens are able to modulate the host response, away 
from that observed during clearance of acute infection, to a response 
which facilitates persistence of the pathogen with minimal host dam-
age, which might arise from a continued inflammatory response [47]. 

Figure 1: A tentative role for the role of SteE in Salmonella in the development of persistent infection in typhoid infections caused by S. 
Typhimurium, S. Gallinarum and S. Typhi. Typhoid serovar infects resident steady state macrophages. Effector proteins such as SteE are secreted 
intracellularly which causes macrophage differentiation into M2 macrophages. The patterns of cytokine production induce proliferation of Th2 
lymphocytes leading to clonal expansion. This leads to a move away from production of IFNγ, TNF-α and IL-17 towards IL-10, IL-4 and IL-13 
which are suppressive signals for macrophages which are unable to kill the intracellular Salmonellae.
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In chickens infected with S. Gallinarum, down-regulation of the 
inflammatory response and up-regulation of IL-10 is correlated with 
transit from the intestine to the liver [49]. S. Typhi murium is found 
to be preferentially associated with anti-inflammatory M2 macro-
phages during the later stages of splenic infection; M2 macrophages 
were identified by CD301 and IL-4Rα markers [50,51]. The Salmo-
nella bacteria persist in splenic granulomas, populated by CD11b+C-
D11c+Ly6C+ macrophages which have been reprogrammed from the 
M1 to M2 phenotype, possibly induced by the bacterial effector pro-
tein SteE, which modulates STAT3 activity promoting the alternative 
M2 phenotype [52] (Figure 1). Reprogramming is thought to occur 
during infection and is limited by TNF production. A key question is 
therefore the cause of the switch and reprogramming from M1 to M2 
macrophages during infection and whether this is associated with 
a temporal change in SteE expression in S. Typhi murium. The steE 
gene is present in 18/24 S. Gallinarum and 2/4 S. Pullorum strains (A. 
Berchieri and V. Benevenides, unpublished results). Higher bacterial 
numbers certainly lead to an increase in the number of IFNγ+ CD4+ 
T cells, neutrophils and CD301- granuloma macrophages which pro-
duce more IFNγ and inducible nitric oxide synthase (iNOS). 

Lower bacterial numbers could therefore reduce the production 
of inflammatory mediators and may lead to the switch from the M1 
phenotype to an M2 phenotype in order to reduce the long-term 
damaging effect of the inflammatory response. It is also possible that 
dendritic cells (DCs) may play an important role in Salmonella per-
sistence. DCs are present in substantial numbers in the sub-epithelial 
dome of murine Peyer’s patches and, following invasion, bacteria are 
found within DCs [53]. DCs are also able to phagocytose Salmonella 
by penetrating the epithelial cell monolayer tight junctions in order to 
sample the intestinal environment directly [54]. Salmonellae are able 
to inhibit MHC II expression by murine DCs and are able to suppress 
CD4+ lymphocyte activation [55-57]. Different DC subsets (which may 
be immunogenic or tolerogenic) have been detected in intestinal tis-
sue [58-60] so it is possible that different DC subsets may be involved 
in persistence and acute infection. Transcriptional changes associated 
with a switch from a Th1 immune response to a Th2 response have 
also been recorded during persistent gall bladder infection in mice by 
S. Typhi murium [61,62], associated with increases in immunoglob-
ulins and transcription of the IL-4, Stat6 and the Th2 transcriptional 
regulator GATA3. We have used S. Pullorum to study persistence in 
chickens. In vitro, both S. Gallinarum and S. Pullorum persist in host 
macrophages and cause less cell death in comparison to more in-
flammatory serovars, such as S. Typhi murium and the taxonomically 
closely related S. Enteritidis [48]. The basis of this is unknown but this 
may be possibly linked to persistence. 

In vivo work with S. Gallinarum and S. Pullorum infection involved 
a susceptible (Sal1S) line of chickens. In the spleen, S. Gallinarum in-
duced significantly lower levels of iNOS and IFNγ and consistently 
lower levels of IL-18 and IL-12 but significantly greater expression 

of anti-inflammatory IL-10 when compared to S. Enteritidis [63]. 
Chickens infected with S. Gallinarum also had a reduced expression 
of inflammatory mediators and increased levels of anti-inflammatory 
IL-10 production. The work with S. Gallinarum must be interpreted in 
the context of the use of susceptible lines of chickens where the main 
outcome is clinical disease and death rather than persistence which 
occurs in more resistant lines of bird. In comparison with S. Enter-
itidis, S. Pullorum-infected monocyte-derived macrophages show re-
duced mRNA expression levels of IL-12α and IL-18 and stimulated the 
proliferation of Th2 lymphocytes, with reduced expression of gamma 
interferon (IFNγ) and IL-17 and increased expression levels of IL-4 
and IL-13. In vivo S. Pullorum also increased the levels of expression of 
IL-4 and decreased the levels of IFNγ in the spleen and caecal tonsil of 
infected birds. There was little evidence of clonal anergy or immune 
suppression induced by S. Pullorum in vitro. These studies suggest 
that S. Pullorum is able to modulate host immunity from a dominant 
IFNγ-producing Th17 response toward a Th2 response [64,65] with 
associated poorer cell mediated tissue clearing but with high levels of 
circulating antibody.

As yet, we have not elucidated whether either of these avian se-
rovars become localised in M2 macrophages during chronic infection 
but the fact that S. Pullorum-infected macrophages produce low levels 
of IL-12α/IL-18 but much higher levels of IL-4/IL-13, suggest that S. 
Pullorum infection may induce an M2 phenotype. In human typhoid 
one study has reported that there are decreased levels of the inflam-
matory mediators IFNγ and IL-17 in the serum of patients with acute 
typhoid compared to levels from convalescent patients [66], sug-
gesting that the inflammatory response is inhibited during the acute 
phase but that this is overcome, leading to reduced clinical symp-
toms and disease convalescence. The Vi capsular antigen by S. Typhi 
is thought to contribute to inhibition of the inflammatory response, 
to reduced opsonisation, phagocytosis, and production of oxidative 
killing pathways [67] and IL-8 production via inhibition of Toll-like 
receptor signalling. Transcriptional changes in blood [68] suggest 
that carriers showing persistent infection exist in two populations 
with a third of individuals showing patterns of raised levels of gene 
expression more closely resembling post-acute patients and with the 
remainder showing much lower levels. This latter group also showed 
a reduction in lymphocyte numbers, transcripts associated with CD8+ 
cytotoxic T lymphocytes, several neurotransmitter transcripts and 
glutamate receptor SLC1 A6 found in Kupfer cells [69].

Proteomic analysis [70] of blood from chronic typhoid carriers 
compared with healthy individuals indicated increased proprotein 
convertase, subtilin and furin, the latter of which has also been shown 
to act as a TGF-β1 converting enzyme leading to biologically active 
TGF-β 1 [71,72] which, in murine S. Typhi murium infection, is also as-
sociated with decreased Salmonella numbers in liver and spleen [73]. 
It seems clear that persistent infection produced by these well stud-
ied serovars involves bacterial-mediated immune-modulation to re-
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duce the harmful anti-bacterial effects of the inflammatory response 
through the production anti-inflammatory chemokines and modula-
tion towards a Th2-type response. The mouse model of persistence 
with S. Typhimurium infection has been particularly useful and it 
seems likely that S. Typhi and S. Pullorum will follow the same model. 
How far this model will also transfer to other Salmonella pathogens of 
livestock particularly S. Dublin and S. Abortusovis remains to be seen. 
The bacterial factors that are likely to lead to transformation of M1 
macrophages to a M2 phenotype are not yet known. 

An Immunological Approach to Ameliorating 
Persistent Infection in the Typhoid Serovars

Experimental evidence for other infection models, involving dif-
ferent pathogens, indicates immunological flexibility and the scope 
for remodulating the nature and direction of the immune response by 
administration of immunological signalling proteins, particularly cy-
tokines. Thus, for example, intradermal IFNγ administration has been 
shown to change local leprosy infection from the lepromatous to tu-
berculoid form, with increases in the numbers of CD4+ T-cells and re-
ductions in bacterial numbers in dermal biopsies [74]. IL-12 adminis-
tration can also change the course of Leishmania major infection [75]. 
Finkelman, et al. [76] were able to modulate the mouse response to 
Nippostrongylus braziliensis infection, away from a Th2 dominant 
response, which is characterised by IL-3 and IL-4 production, by par-
enteral administration of IL-12. This suggests that something simi-
lar might be done to ameliorate persistent typhoid-like Salmonella 
infections. We set up a persistent S. Pullorum infection in chickens 
and administered a single large dose of recombinant chicken IFNγ by 
the intravenous route. This led to a reduction in the total number of 
infected spleens: 4/18 (22%) spleens positive for S. Pullorum in the 
IFNγ-treated animals and 7/13 (54%) in the untreated controls (P 
< 0.01) (Barrow, unpublished data). In another study, recombinant 
chicken IFNγ was also able to enhance NO production in avian pe-
ripheral blood monocyte-derived macrophages and reduce the intra-
cellular replication of S. Typhimurium and Enteritidis [77,78]. 

Discussion
The use of the S. Typhi murium mouse model together with our 

current understanding of the behaviour of S. Pullorum in chickens has 
contributed to a better understanding of human typhoid. It remains 
to be seen how far the explanation of the immunological basis of per-
sistent infection in one species relates exactly to another host species. 
The M1 to M2 transformation in the mouse induced in part by the 
SteE protein has suggested a similar approach elucidating its role in 
other serovar-host combinations might be appropriate. The presence 
of the steE gene in a proportion, but not all, strains of S. Pullorum and 
S. Gallinarum suggests that the situation is probably more complex. 
How far this has relevant to S. Typhi persistence in man also remains 
to be seen. The work by Finkelman’s group [75] prompted this group 
to explore this approach to reduce persistence in S. Pullorum in chick-

ens with some success. For practical and economic reasons, cytokine 
therapy is highly unlikely to be used for S. Pullorum infection in sus-
ceptible commercial chickens and is unlikely to be effective against 
S. Gallinarum, which shows persistence in SAL1R chickens similar to 
S. Typhi murium in slc11a1+/+ mice which requires IFNγ activity [4]. 
However, it is conceivable that if administered therapeutically, it may 
have some application in reducing persistence in the liver and spleen 
in human typhoid carriers or may reduce gall bladder infection if ad-
ministered during acute infection. There may also be benefits from 
applying this approach to some key Salmonella species that cause 
major economic problems in livestock. It is conceivable that live vac-
cines, many of which stimulate IFNγ production, and which can be 
used therapeutically under some circumstances, might also be used 
in this way to the same effect [79].

Conclusion
Our understanding of the nature and basis of persistent infection, 

which is a key feature of typhoid-like Salmonella infections is begin-
ning to be understood in immunological terms. While the microbial 
basis for this phenomenon is not clear there are indications that there 
is scope for further investigation of the administration of cytokines 
to modulate the nature of the immune response which could reduce 
faecal shedding and the associated public health problems in human 
typhoid and improve animal health in key livestock species.
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