Case Report

ISSN: 2574 -1241

DOI: 10.26717/BJSTR.2024.56.008830

Long-Term Cryopreservation of an Autologous Immunocomplex of Dendritic Cells and Cancer Antigen (HiDCV-OS1) that Stimulates Antitumor Immunity Against Chemotherapy-Resistant Ovarian Cancer

Masao Sasai^{1,2}, Kyoso Ishida³, Tomoyuki Nishikawa⁴, Chin Yang Chang⁵, Jiro Fujita⁶, Hiroki Higashihara⁷, Keigo Osuga⁸, Toshihiro Nakajima⁹, Kenjiro Sawada¹⁰, Tadashi Kimura¹¹, Yasufumi Kaneda¹² and Kazuma Sakura^{2,13*}

¹Frontier of Regenerative Medicine, Graduate School of Medicine, Osaka University, Japan

²Department of Medical Innovation, Osaka University Hospital, Japan

³Toyonaka Municipal Hospital, Japan

⁴Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Japan

⁵Department of Gene & Stem Cell Regenerative Therapy, Graduate School of Medicine, Osaka University, Japan

⁶Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Japan

⁷Center of Interventional Radiology, Osaka University Hospital, Japan

⁸Department of Diagnostic Radiology, Osaka Medical and Pharmaceutical University, Japan

⁹Immunomedicine, Inc., Japan

¹⁰Division of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Japan

¹¹Sakai City Medical Center, Japan

¹²Administration Bureau, Osaka University, Japan

¹³Respiratory Center, Osaka University Hospital, Japan

*Corresponding author: Kazuma Sakura, Respiratory Center, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka, 565-0871, Japan

ARTICLE INFO

ABSTRACT

Received: 🗰 April 15, 2024 Published: 🖮 April 23, 2024

Citation: Masao Sasai, Kyoso Ishida, Tomoyuki Nishikawa4, Chin Yang Chang, Jiro Fujita, Hiroki Higashihara, Keigo Osuga, Toshihiro Nakajima, Kenjiro Sawada, Tadashi Kimura, Yasufumi Kaneda and Kazuma Sakura. Long-Term Cryopreservation of an Autologous Immunocomplex of Dendritic Cells and Cancer Antigen (HiDCV-OS1) that Stimulates Antitumor Immunity Against Chemotherapy-Resistant Ovarian Cancer. Biomed J Sci & Tech Res 56(2)-2024. BJSTR. MS.ID.008830. In recent years, therapies that use cellular products made from autologous tissues for medical treatment have been developed. Although novel treatments for ovarian cancer, such as a PARP inhibitor, have been developed and the prognosis has improved, for the relapse of ovarian cancer, efficient treatments are not developed for the relapse yet. We started a clinical trial of autologous cell processed products (HiDCV-OS1), which were made from ovarian cancer cells and dendritic cells by using hemagglutinating virus of Japan envelope (HVJ-E). The quality of HiDCV-OS1 was evaluated using cell viability and fusion rate, which were measured using surface antigen markers and flow cytometry. The cryopreservation time was four years, considering the recurrence period. HiDCV-OS1 could be stored for 4 years while maintaining cell viability and fusion rate. The fusion rate of HiDCV-OS1 before and after 4 years of cryopreservation was 30.4%–35.3%, and no changes such as deterioration were observed. Cell viability upon thawing during storage was stable, ranging from 67.0% to 86.0%. When HiDCV-OS1, which had been cryopreserved for 4 years, was administered to patients who had relapsed, some antitumor effects were obtained. HiDCV-OS1, consisting of autologous tumor tissue and dendritic cells with HVJ-E, was cryopreserved for four years, after which the thawed cells maintained their fusion rate and showed a certain anti-tumor effect, suggesting that they may have antigen-presenting potential.

Keywords: Cryopreservation; Personalized Medicine; Vaccine; Treatment; Ovarian Cancer; Hemagglutinating Virus of Japan Envelope

Introduction

In recent years, therapies that use cellular products made from autologous tissues have been developed [1]. In Japan, regenerative medicine is practiced in accordance with two regulations [2]. Ovarian cancer (OC) has a longer time to recurrence than other cancers, which has been extended in recent years with the arrival of novel drugs such as PARP inhibitors [3]. However, when OC relapses, it undergoes repeated remissions and progressions even after treatment is restarted, and eventually resistance develops; therefore, new and improved treatments are needed. Therefore, we established a novel therapeutic strategy using an autologous immunocomplex of dendritic cells (DCs) and cancer antigen (HiDCV-OS1). At the time of the initial surgery, the patient's tumor cells and DCs were fused with HVJ-E for high efficiency and without antigen destruction [4,5], and the immunocomplex was cryopreserved. HiDCV-OS1 was thawed and used when OC relapsed. HiDCV-OS1 was used in patients suffering from chemotherapy-resistant OC (jRCTc051190054) in Japan. This is the first report on the long-term cryopreservation of vaccine dendritic cells for cancer treatment.

Materials and Methods

Production of HiDCV-OS1 using Patient-Derived OC and Mononuclear Cells

Pre-treatment of Tumor Tissue: The OC was cut into small pieces (14.6 g ± 2.5 g) and dissociated completely using a gentleMACS octo Dissociator with Heaters (Miltenyi Biotec, K.K., Tokyo, Japan). A cloudy cell layer was obtained using the Ficoll–Paque centrifugation method. OC was isolated using Dynabeads CD45 (Thermo Fischer Scientific K. K., Tokyo, Japan). 1.2 x 10⁶ cells of OC with STEM-CELL-BANKER GMP grade (Nippon Zenyaku Kogyo Co.,Ltd. Fukushima, Japan) was added to 1.8 mL cell cryopreservation tubes and frozen at

80°C. The cells were transferred to -150.0°C ± 15.0°C for storage within 3 days. The cells were thawed and irradiated with 50-Gy radiation (TX-2500, Nanogray, inc. Osaka, Japan).

Mononuclear Cell Isolation and DC Maturation: Apheresis (COBE-Spectra, Terumo BCT, Tokyo, Japan) was performed to obtain mononuclear cell components $1.3 \pm 0.14 \times 10^9$ cells) and incubated for approximately 7 days. Immature DCs were then collected.

Promotion of DC Maturation: AIM-V medium (Thermo Fischer Scientific K. K., Tokyo, Japan) and 25 mNAU/mL of HVJ-E were added to DC and incubated for 24 h for DC maturation.

Cryopreservation of DC: DC was suspended in STEM-CELL-BANKER GMP grade at a rate of 2 million cells per 1.2 mL, placed in 1.8 mL cell cryopreservation tubes, and frozen at 80 °C. The cells were transferred to -150.0°C \pm 15.0°C for storage within 3 days.

Preparation of HiDCV-OS1: Mixed at a ratio of $1 \ge 10^6$ mature dendritic cells to $5 \ge 10^5$ OC cells with 250 mNAU of HVJ-E and then shaken with a shaker (75 rpm) at 4°C for 10 min. The cells were then shaken with a shaker (75 rpm) for 20 min at 37°C.

Cryopreservation of HiDCV-OS1: One million cells/mL of HiD-CV-OS1 STEM-CELLBANKER GMP grade was added to 1.8 mL cell cryopreservation tubes and frozen at 80°C. The cells were transferred to -150.0° C ± 15.0° C for storage.

Assessment of the HiDCV-OS1 Quality

Viability: Cells stored for variable periods (3, 12, 24, 96 months) were tested for viability using the trypan blue exclusion test.

Fusion rate of HiDCV-OS1: The percentage of HiDCV-OS1 cells was calculated by detecting CD11c- and CD326- or CD90-positive cells using flow cytometric analysis (Table 1).

Table 1: List and addition volume of the antibodies.
--

Negative ctrl.	Positive ctrl.	Sample
PE/Cy7 Mouse IgG1, κ Isotype Ctrl 4 μL	PE and Cy7 anti-human CD11c 2 μL	PE and Cy7 anti-human CD11c 2 μL
PE Mouse IgG2b, κ Isotype Ctrl 4 μL	PE Mouse IgG2b, κ Isotype Ctrl 0.62 μ L	PE anti-human CD326 (EpCAM) 5 μL
APC Mouse IgG1, κ Isotype Ctrl 5 μ L	APC Mouse IgG1, κ Isotype Ctrl 5 μL	APC anti-human CD90 (Thy1) 5 μL
	PE/Cy7 Mouse IgG1, κ Isotype Ctrl 4 μL PE Mouse IgG2b, κ Isotype Ctrl 4 μL	PE/Cy7 Mouse IgG1, к Isotype Ctrl 4 μL PE and Cy7 anti-human CD11c 2 μL PE Mouse IgG2b, к Isotype Ctrl 4 μL PE Mouse IgG2b, к Isotype Ctrl 0.62 μL

Note: APC, allophycocyanin; CD, cluster of differentiation; Cy, carboxylic acid; EpCAM, epithelial-specific cell adhesion molecule; IgG, immunoglobulin G; PE, phycoerythrin; Thy1, thymus cell antigen 1.

Results

The viability and fusion rate of cryopreservation start date and results up to 4 years after storage are presented in Table 2, and the HiDCV-OS1 subpopulation is shown in Table 3.

Table 2: Viability and fusion rate of HiDCV-OS1 after long-term stor-

age.						
	Viability (%)	Fusion rate (%)				
Day 0	-	30.4				
3 months	67.0	30.1				
12 months	73.0	36.5				
24 months	86.0	34.2				
96 months	71.4	35.7				

	Thy-1+, EpCAM-	Thy-1+, EpCAM+	Thy-1-, EpCAM-	Thy-1-, EpCAM+
Day 0	30.4	0	69.6	0
3 months	30.1	0	69.9	0
12 months	36.5	0	63.4	0
24 months	34.2	0	65.7	0
96 months	35.3	0.4	64.3	0

Table 3: Subpopulation (%) of HiDCV-OS1.

Note: EpCAM, epithelial-specific cell adhesion molecule; Thy1, thym.

Discussion

We showed the viability and cell fusion rates of HiDCV-OS1 after four years of cryopreservation. The specification criteria were the quality of HiDCV-OS1 after cryopreservation based on previous reports on antitumor efficacy [6]. In fact, all HiDCV-OS1 stocks met these criteria. To produce HiDCV-OS1, we used HVJ-E, which has high fusion efficiency between DCs and cancer cells, high antigen-presenting ability, and high antitumor effect [6]. While OC has a prolonged time between initial treatment remission and relapse [3], there is a lack of treatment options when the disease recurrence. Therefore, the use of HiDCV-OS1 after recurrence is expected to have an antitumor effect as a novel therapeutic tool. It is thought to be difficult to obtain sufficient tumor volume to produce the necessary amount of HiD-CV-OS1 at that time, and the general condition of relapsed patients is often poor, and sufficient monocytes cannot be collected to differentiate into dendritic cells. There is a concern that the properties of tumor cells may change during recurrence and HiDCV-OS1 production. However, tumor cells that have acquired resistance to chemotherapy probably derived from cancer stem cells and express Thy-1. Because HiDCV-OS1 contains cancer antigens derived from Thy-1-positive cells, it can be expected to generate antitumor immunity even after recurrence [7,8]. Therefore, it is reasonable to prepare and store cell preparations for future administration in case of recurrence when the patient is well. HiDCV-OS1, which was stored for approximately 4 years, was used in patients with recurrent OC. There were no serious adverse events, and some efficacy was observed [9,10]. The relapsed patient was alive 387 days after the administration of HiDCV-OS1.

Conclusion

HiDCV-OS1, consisting of autologous tumor tissue and dendritic cells with HVJ-E, was cryopreserved for four years, after which the thawed cells maintained their fusion rate and showed a certain anti-tumor effect, suggesting that they may have antigen-presenting potential.

Acknowledgement

We are grateful to the Centre for Translational Research, Osaka University Hospital, for their kind support in the production of HiD-CV-OS1 and the conduct of the clinical trial.

Authorship Contribution

Conceptualization, Y. K. and K. S.; data curation, M. S., T. N. and K. S.; investigation, T. N., CY. C., J. F., H. H., K. O., K. S. and T. K.; writing-original draft preparation, M. S.; writing-review and editing, K. S.; project administration, T. N., K. S. and T. K.; supervision, Y. K.

Conflict of Interests

Conflicts of interest related to this study have been reviewed and appropriately managed by the Institutional Conflicts of Interest Committee.

Funding

This research was supported by AMED under Grant Number JP21bk0104104, a joint research grant from Ishihara Sangyo Kaisha, LTD., and a Grant-in-Aid for Exploratory Research (23659671).

References

- 1. I Palaia, F Tomao, CM Sassu, L Musacchio, PB Panici, et al. (2020) Immunotherapy For Ovarian Cancer: Recent Advances And Combination Therapeutic Approaches. Onco Targets Ther 13: 6109-6129.
- Tobita M, Konomi K, Torashima Y, Kimura K, Taoka M, et al. (2016) Japan's challenges of translational regenerative medicine: Act on the safety of regenerative medicine. Regenerative Therapy 4: 78-81.
- 3. Ray Coquard I, Leary A, Pignata S, Cropet C, Gonzalez Martin A, et al. (2023) Olaparib plus bevacizumab first-line maintenance in ovarian cancer: final overall survival results from the PAOLA-1/ENGOT-ov25 trial. Annals of Oncology 34: 681-692.
- Okada Y (1993) Sendai virus-induced cell fusion. Methods Enzymol 221: 18-41.
- M Kurooka, Y Kaneda (2007) Inactivated Sendai Virus Particles Eradicate Tumors by Inducing Immune Responses through Blocking Regulatory T Cells. Cancer Res 67(1): 227-236.
- K Hiraoka, S Yamamoto, S Otsuru, S Nakai, K Tamai, et al. (2004) Enhanced tumor-specific long-term immunity of hemagglutinating virus of Japan-mediated dendritic cell-tumor fuzed cell vaccination by coadministration with CpG Oligodeoxynucleotides1. J Immunol 173 (7): 4297-4307.
- Connor EV, Saygin C, Braley C, Wiechert AC, Karunanithi S, et al. (2019) Thy-1 predicts poor prognosis and is associated with self-renewal in ovarian cancer. Journal of Ovarian Research 12: 112.
- 8. Abeysinghe HR, Cao Q, Xu J, Pollock S, Veyberman Y, et al. (2003) THY1 expression in associated with tumor suppression of human ovarian cancer. Cancer Genetics and Cytogenetics 143: 125-132.

- 9. Derouiche F, Bour JM, Legrand C, Capiaumont J, Belleville F, et al. (1989) Improved long-term storage of hybridomas at -80°C using a bovine milk derivative. Journal of Immunological Methods 125: 13-18.
- 10. J Underwood, M Rahim, C West, R Britton, Elaine Skipworth, et al. (2020) How old is too old? In vivo engraftment of human peripheral blood stem cells cryopreserved for up to 18 years: implications for clinical transplantation and stability programs. World J Stem Cells 12(5): 359-367.

ISSN: 2574-1241

DOI: 10.26717/BJSTR.2024.56.008830

Kazuma Sakura. Biomed J Sci & Tech Res

(cc)

(i) (i) This work is licensed under Creative SA Commons Attribution 4.0 License

Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us

- Global archiving of articles •
- . Immediate, unrestricted online access
- **Rigorous Peer Review Process**
- Authors Retain Copyrights ٠
- Unique DOI for all articles ٠

https://biomedres.us/