info@biomedres.us   +1 (720) 414-3554   One Westbrook Corporate Center, Suite 300, Westchester, IL 60154, USA   Site Map
ISSN: 2574 -1241

Impact Factor : 0.548

  Submit Manuscript

Research ArticleOpen Access

A Spatial Crypto Technique for Secure Data Transmission

SK Sarif Hassan*1, Pabitra Pal Choydhury2 and Soumalya Ghosh3.

  • 1Department of Mathematics, Pingla Thana Mahavidyalaya, India
  • 2Applied Statistics unit, Indian Statistical Institute, India
  • 3School of Computing Science & Engineering, Galgotias University, India

Received: April 27, 2017   Published: May 25, 2017

Corresponding author: SK Sarif Hassan, Department of Mathematics, Pingla Thana Mahavidyalaya, Malligram, Paschim Medinipur, West Bengal, India

DOI: 10.26717/BJSTR.2017.01.000107

Abstract

This paper presents a spatial encryption technique for secured transmission of data in networks. The algorithm is designed to break the ciphered data packets into multiple data which are to be packaged into a spatial template. A secure and efficient mechanism is provided to convey the information that is necessary for obtaining the original data at the receiver-end from its parts in the packets. An authentication code (MAC) is also used to ensure authenticity of every packet.

Keywords: Data Packet; Clastal W; Star model and Key packet

Introduction

Security of network communications is the most important issue in the world. Information transactions related to banks, credit cards, and government policies are transferred from place to place with the help of network transmission. The high connectivity of the World Wide Web (WWW) has left the world ‘open’. Such openness has resulted in various networks being subjected to multifarious attacks from vastly disparate sources, many of which are anonymous and yet to be discovered. This growth of the WWW coupled with progress in the fields of e-commerce and the like has made the security issue even more important [1-5].

In practice, in a computer network, data is transferred across the nodes in the form of packets of fixed or variable sizes. In usual practice, the implementation is done by some secured algorithms at the application level on the data and the enciphered data is packetized at lower levels (in the OSI architecture) and sent. Any intruder able to obtain all the packets can then obtain the enciphered data by appropriately ordering the data content of each of these packets. Then, efforts can be made to break the secured algorithm used by the sender. In the process of transmission, if it is possible to prevent any information release as to the structure of the data within the packets, an intruder would know neither the nature of the data being transferred nor the ordering of the content from different packets. This is what our algorithm achieves by using a genomical spatial envelope. We have used genomic steganography in enhancing the security in the algorithm.

The Algorithm

We use the concept of Message Authentication Code (MAC) as suggested in [Rivest, 1998] to authenticate messages. For a packet of data, the MAC is calculated as a function of the data contents, the packet sequence number and a secret key known only to the sender and the receiver, and then it is appended to the packet. On receiving a packet, the receiver first computes the MAC using the appropriate parameters, and then performs a check with the MAC attached to the packet. If there is no match, then the receiver knows that the packet has been tampered with. A detailed explanation is provided in the next section.

Let the size of an encrypted packet data in a network be denoted as PS. PS has a value of 1024- bits or 4096- bits typically. The packet data is now to break arbitrarily in N parts. These N parts are to be inserted to into the blank envelope. The size of total data, number N and the nucleotide sequences with which alignment is to be performed using ClastalW is communicated between the receiver and sender using a secure channel. The packet data size is represented in number of bits required to represent the size of total data sent .We use (N-1)*2 bits (or N-1 ATGC’s) to represent packet data number [6,7].

Sender encryption technique: S (P)

  1. Transform the data P to a cipher data C by a crypto transform.
  2. Now using the transformation s (defined as s (00)=A, f (01)=c, s (10)=G AND s (11)=T), transform S to its A,T, C and G texture data E.
  3. Tear the data E into N packets of arbitrary size where Eijk and Eij(k+1) give together Eij Similarly Eij and Ei(j+1) give together Ei.
  4. Size (size of data plus size of packet number) of each packet (which has also undergone all the above transformations) is inserted at the starting of each packet before the packet number.
  5. Now take two or three (sender choice) nucleotide sequences and perform alignment using Clastal W.
  6. Wherever nucleotides are different for those two or three sequences in the alignment we replace that particular position by one (ATCG text) from the Eijk…until it is exhausted.
  7. After Eijk…is exhausted we insert packet number at next positions where nucleotides are different.
  8. The remaining positions (if any) where nucleotides are different are replaced randomly by ATGC sequence.
  9. Find MAC corresponding to the packet data DEij...
  10. Repeat Step 5, 6, 7 and 8 for each Eijk… for all N parts. Each of these new parts is renamed as DEijk….
  11. Send each DEijk… to the receiver in different time and different networks.

Receiver’s decryption technique: R (DE)

In receiver end the following steps are required to decrypt the message:

  1. Receive each DEijk… from the sender in different time and different networks.
  2. (A) Demonstration of the Algorithm:

    The plain text (P) is

    I AM SUGATA SANYAL

    The binary text (B) corresponding to (P):

    0100100100100000010000010100110100100000010100110101010101000111010000010101010 0010000010010000001010 0110100000101001110010110010100000101001100 (Size is 144)

    The cipher text (C) corresponding to (B) The crypto map is T (0) =1; T (1) =0.

    1011011011011111101111101011001011011111101011001010101010111000101111101010101110 1111101101111110101 1001011111010110001101001101011111010110011

    We have to transfer the each data into its ATCG from by the following transformation:

    s (00) = A; s (01) = C; s (10) = G and s (11) = T

    The transformed text (E) corresponding to (C) is:

    GTCGTCTTGTTGGTAGTCTTGGTAGGGGGTGAGTTGGGGTGTTGTCTTGGTAGTTGGTACGGCGGTTGGTAT

    Now we need to break the data E into arbitrarily N parts.

    E1=000001: GTCGTCTTGTTGGTAGTCTTGGT (Size 23)

    E2:AGGGGGTGAGTTGGGGTGTTGTCTTGGTAGTTGGTACGGCGGTTGGTAT (Size 49)

    E21=001001: AGGGGGTG (Size 8)

    E22: AGTTGGGGTGTTGTCTTGGTAGTTGGTACGGCGGTTGGTAT (Size 41)

    E221=101001: AGTTGGGGT (Size 9)

    E222=101010: GTTGTCTTGGTAGTTGGTACGGCGGTTGGTAT (Size 32)

    Suppose we take the break data set as { E1, E21, E221, E222}

    Now we add packet size (size of data and size of packet number) at the starting of each packet.

    Since our data size before packet formation is 144 which can be represented in (10010000) 8 bits we use a 8 bits (4 ATGC’s) representation of packet size.

    Sizes of each packet are given below:

    E1: 26 (size of packet + size of packet number=23+3)

    (26)10=(00011010)2

    Using crypto map we get size as 11100101

    Using s size is represented as TGCC

    E21: 11 (size of packet + size of packet number=8+3)

    (11)10= (00001011)2

    Using crypto map we get size as 11110100

    Using s size is represented as TTCA

    E221: 12 (size of packet + size of packet number=9+3)

    (12)10= (00001100)2

    Using crypto map we get size as 11110011

    Using s size is represented as TTAT

    E222: 35 (size of packet + size of packet number=32+3)

    (35)10= (00100011)2

    Using crypto map we get size as 11011100

    Using s size is represented as TCTA

    Now we need to packetize the above data into star model (OR1D2, OR1D4 and OR1D5) ….

    Note that we need to send the packet number along with this data packet. We insert the data content followed by the packet number.

    Therefore the data packets are as follows:

    DE000001: (TGCC) GTCGTCTTGTTGGTAGTCTTGGT (AAC)

    ATGGATGGAGTGAACCAGAGTGACCGTTCACAGTTCCTTCTCCTGGGGAT

    GTCAGAGAGTCCTGAGCAGCAGCTGATCCTGTTTTGGATGTTCCTGTCCA

    TGTACCTGGTCACGGTGCTGGGAAATGTGCTCATCATCCTGGCCATCAGC

    TCTGATTCCCTCCTGCACACCCCCTTGTACTTCTTCCTGGCCAACCTCTC

    CTTCACTGACCTCTTCTTTGTCACCAACACAATCCCCAAGATGCTGGTGA

    ACGTCCAGTCCCATAACAAAGCCATCTCCTATGCAGGGTGTCTGACACAG

    CTCTACTTCCTGGTCTCCTTGGTGTCCCTGGACAACCTCATCCTGGCGGT

    GATGGCGTATGATCGCTATGTGGCCAACTGCTGCCCCCTCCACTAGTCCA

    CAGCCATGAGCCCTTTGCTCTGTGTCTTGCTCCTTTCCTTGTGTTGGGAA

    CTCTCAGTTCTCTATGGCCTCGTCCACACCTTCCTCGTGACCAGCGTGAC

    CTTCTGTGGGACTGGACAAATCCACTACTTCTTCTGTGAGATGTAATTGC

    TGCTGTGGATGGCATGTTCCAACAGCCATATTAATCACACAGGGGTGATT

    GCCACTGGCTGCTTCATCTTCCTCACACCCTTGGGTTTCATGAACATCTC

    CTATGTACGTATTGTCAGACCCATCCTATAAATGCCCTCCGTCTCTAAGA

    AATACAAAGCCTTCTCTACCTGTGCCTCCCATTTGGGTGTAGTCTCCCTC

    TTATATGGGATGCTTCATATGGTATACCTTGAGCCCCTCCATACCTACTC

    GATGAAGGACTCAGTAGCCACAGTGATGTATGCTGTGCTGACACCCATGA

    TGAATCCGTTCATCTACAGACTGAGGAACAATGACATGCATGGGGCTCTG

    GGAAGACTCCTATGAATACGCTTTAAGAGGCTCATA

    DE21=001001: (TTCA) AGGGGGTG (AGC)

    ATGGATGGAGTTAACCAGAGTGACAAGTCAGAGTTCCTTCTCCTGGGGAT

    GTCAGAGAGTCCTGAGCAGCAGCGGATCCTGTTTTGGATGTTCCTGTCCA

    TGTACCTGGTCACGGTGGTGGGAAATGTGCTCATCATCCTGGCCATCAGC

    TCTGATTCCCTCCTGCACACCCCCGTGTACTTCTTCCTGGCCAACCTCTC

    CTTCACTGACCTCTTCTTTGTCACCAACACAATCCCCAAGATGCTGGTGA

    ACATCCAGTCCCAGAACAAAGCCATCTCCTATGCAGGGTGTCTGACACAG

    CTCTACTTCCTGGTCTCCTTGGTGCCCCTGGACAACCTCATCCTGGCAGT

    GATGGCTTATGAGCGCTATGTGGCCACCTGCTGCCCCCTCCACTAATGCA

    CAGCCATGAGCCCTAGGCTCTGTTTCTTCCTCCTATCCTTGTGTTGGGCT

    CTGTCAGTTCTCTATGGCCTCCTGCACACCATCCTCTTGACCAGGGTGAC

    CTTCTGTGGGACGTGATAAATCCACTACATCTTCTGTGAGATGTACCTAT

    TGCTGAGGTTGGCATGTTCCAACAGCCACATTAGTCACACAGAGGTGATT

    GCCACGGGCTGCTTCATCTTCCTCAGACCCTTCGGTTTCATGAACATCTC

    CTATGTACGTATTGTCAGAGCCATCCTCATAATACCCTCAGTCTCTAAGA

    AATACAAAACCTTCTCTACCTGTGCCTCCCATTTGGGTGGGGTCTCCCTC

    TTATATGGGAAACTTGGTATGGTCTACCTACAGCCCCTCCATACCTACTC

    AATGAAGGACTCAGTAGCCACAGTGATGTATGCTGTGCTGACACCAATGA

    TGAAACCTTTCATCTACAGGCTGAGGAACAACGACATGCATGGGGCTCAG

    GGAAGAGTCCTAATAAAACGCTTTCAGAGGCTTAAA

    DE221=101001: (TTAT) AGTTGGGGT (GGC)

    ATGGATGGAGTTAACCAGAGTGAATAGTCATAGTTCCTTCTCCTGGGGAT

    TTCAGAGAGTCCTGAGCAGCAGCGGATCCTGTTTTGGATGTTCCTGTCCA

    TGTACCTGGTCACGGTGGTGGGAAATGTGCTCATCATCCTGGCCATCAGC

    TCTGATTCCCGCCTGCACACCCCCGTGTACTTCTTCCTGGCCAACCTCTC

    CTTCACTGACCTCTTCTTTGTCACCAACACAATCCCCAAGATGCTGGTGA

    ACTTCCAGTCCCAGAACAAAGCCATCTCCTATGCAGGGTGTCTGACACAG

    CTCTACTTCCTGGTCTCCTTGGTGGCCCTGGACAACCTCATCCTGGCCGT

    GATGGCATATGATCGCTATGTGGCCAGCTGCTGCCCCCTCCACTAATGCA

    CAGCCATGAGCCCTATGCTCTGTGTCTTCCTCCTATCCTTGTGTTGGGTG

    CTATCTGTGCTCTATGGCCTCCTACTCACCGTCCTCCTGACCAGAGTGAC

    CTTCTGTGGGACTGGACAAATCCACTACTTCTTCTGTGAGATGTACCTCA

    TGCTGAGGTTGGCATGTTCCAACAACCAAATAATTCACACAGAGTTGATT

    GCCACAGGCTGCTTCATCTTCCTCATGCCCTTCGGATTCTTGAGCACATC

    CTATGTACGTATTGTCAGACCCATCCTATGAATCCCCTCAGTCTCTAAGA

    AATACAAAACCTTCTCTACCTGTGCCTCCCATTTGGGTGGCGTCTCCCTC

    TTATATGGGATGCTTATTATGGTGTACCTCAAGCCCCTCCATACCTACTC

    TATGAAGGACTCAGTAGCCACAGTGATGTATGCTGTGGTGACACCTATGA

    TGAAACCGTTCATCTACAGGCTGAGGAACAATGACATGCATGGGGCTCTG

    GGAAGAATCCTATGCAAACCCTTTTAGAGGCAAATA

    DE222=101010: (TCTA) GTTGTCTTGGTAGTTGGTACGGCGGTTGGTAT (GGG)

    ATGGATGGAGTCAACCAGAGTGATAGTTCATAGTTCCTTCTCCTGGGGAT

    GTCAGAGAGTCCTGAGCAGCAGCTGATCCTGTTTTGGATGTTCCTGTCCA

    TGTACCTGGTCACGGTGCTGGGAAATGTGCTCATCATCCTGGCCATCAGC

    TCTGATTCCCTCCTGCACACCCCCTTGTACTTCTTCCTGGCCAACCTCTC

    CTTCACTGACCTCTTCTTTGTCACCAACACAATCCCCAAGATGCTGGTGA

    ACGTCCAGTCCCAGAACAAAGCCATCTCCTATGCAGGGTGTCTGACACAG

    CTCTACTTCCTGGTCTCCTTGGTGTCCCTGGACAACCTCATCCTGGCAGT

    GATGGCGTATGATCGCTATGTGGCCATCTGCTGCCCCCTCCACTAGGTCA

    CAGCCATGAGCCCTACGCTCTGTGTCTTGCTCCTCTCCTTGTGTTGGGGG

    CTTTCTGTGCTCTATGGCCTCGTTCACACCTTCCTCGTGACCAGGGTGAC

    CTTCTGTGGGGCATGAGACATCCACTACATCTTCTGTGATATGTAGCTCA

    TGCTGAGGTTGGCATGTTCCAACAGCCAAATTATTCACACAGCGCTGATT

    GCCACCGGCTGCTTCATCTTCCTCATGCCCTTAGGTTTCATGATCAGCTC

    CTATGTACGTATTGTCAGACCCATCCTTCAAATCCCCTCAGTCTCTAAGA

    AATACAAAACCTTCTCCACCTGTGCCTCCCATTTGGGTGTAGTCTCCCTC

    TTATATGGGAGTCTTCTTATGGTATACCTAGAGCCCCTCCATACCTACTC

    ATTGAAGGACTCAGTAGCCACAGTGATGTATGCTGTGCTGACACCAATGA

    TGAAACCCTTCATCTACAGGCTGAGGAACAAAGACATGCATGGGGCTCTG

    GGAAGATTCCTATACAAACCCTTTAAGAGGCCAATA

    The above packets are sent at various times and different networks. The data packet size can be considered as the header and packet number as the trailer of data packet. We consider that two information the total message length and number of packets N (144 and 4 respectively for above example) has been communicated to the receiver through a secure channel. These packets when received on the receiver’s end can be decrypted using the keys (nucleotide sequences used in Clastal W, the crypto transform and the relation ) and following the steps mentioned in the algorithm.

    Comments on the security aspects of the proposed algorithm

    In the proposed algorithm, the data, ready to be sent, is broken into N arbitrary parts. These parts are to be sent through different communication channels at different times. As a consequence, it would be almost impossible for any attacker to get back all those parts. Even if one gets all the parts again it would be difficult for him/her to get the original information by properly merging the parts because key packets have to be recognized properly. In our algorithm a steganographic method is used, the strength of DNA steganographic lies in our conjecture that deciphering on the basis of cryptanalysis techniques like chosen plain text attack, Chosencipher text attack or adaptive chosen-cipher text attack etc become fruitless because it is mathematically infeasible to extract the whole information from these parts in reasonable time.

    The aim of the any cryptosystem is to procure a reasonable amount of security in transmission of a packet data. Although our algorithm is not in the form of conventional cryptosystem due to the fact that in our system there is a provision of key packet sending but definitely our system deserves the attention of the cryptocommunity in terms of the security of transmission of data [6,7]. In spite of our best efforts we have not been successful in deciphering any appreciable information encoded in the DNA sequences for the last decades. So we are hopeful that we will be able to settle the conjecture as posed in the section 3 that it would be computationally infeasible by any present cryptanalytic techniques to decipher the encoded information.

    Acknowledgement

    Authors are grateful to Dr. Sugata Sanyal of TIFR Mumbai and Dr. Rangarajan Athi Vasudevan for his valuable suggestions and visiting students Mr. Rajneesh Singh, Ms. Snigdha Das and for their valuable technical help in making advanced C programs and other computer applications on Windows support used for this study.

    References

    1. Vasudevan RA, Abraham A Sanyal S (2005) A Novel Scheme for Secure Data Transfer over Computer Networks. Journal of Universal Computer Science 11(1): 104-121.
    2. RA Vasudevan, A Abraham, S Sanyal, DP Agrawal (2004) Jigsaw-based Secure Data Transfer over Computer Networks. IEEE International Conference on Information Technology: Coding and Computing, 2004. (ITCC ’04) Proceedings of ITCC 2004 Las Vegas, Nevada, USA, 1: 2-6.
    3. Tanmoy Sarkar, Sugata Sanyal (2014) Reversible and Irreversible Data Hiding Technique.
    4. Chi Kwong Chan, LM Cheng (2004) Hiding data in images by simple LSB substitution. The Journal of pattern recognition society, Pattern Recognition 37(3): 469-474.
    5. Min Wu, Bede Liu (2004) Data hiding in binary image for authentication and annotation IEEE Transactions on Multimedia 6(4): 528-538.
    6. Ashish Gehani, Thomas LaBean, John Reif (2000) DNA-Based Cryptography DIMACS DNA Based Computers V. American Mathematical Society.
    7. Sk S Hassan, P Pal Choudhury, A Pal, RL Brahmachary A. Goswami (2010) L-Systems: A Mathematical Paradigm for Designing Full Length Genes and Genomes. Genome Biol 11(Suppl 1): P15.