*Corresponding author:
Emma Swanwick, School of Health Sciences, University of Salford, Frederick Road, Salford M6 6PU, UKReceived: June 04, 2018; Published: June 21, 2018
DOI: 10.26717/BJSTR.2018.05.001276
To view the Full Article Peer-reviewed Article PDF
Introduction: Different training models can produce the same outcome in competition. As the magnitude of change is dependent on the characteristics of the training programs, the duration of the intervention, and the gender, it is important to identify the training stimulus and how that relates to performance. The aim was to investigate the utility of a new model to describe training adaptions and outcomes.
Methods: 12 Swimming Australia Scholarship holders were followed over a 6-week initial training period. A range of sub maximal and maximal swims were used to assess their training state in week 0 week 3 and week 7. We used a novel tri-phasic model to monitor and assess athlete conditioning.
Results: Aerobic contribution increase between test 1 and 3 was 8.25% (±19.74%;). Glycolytic metabolism showed a reduction in contribution of -20.40% (±10.82%) that was significant (P = 0.04). Anaerobically, there was an overall gain of 12.15% (±11.70%; P = 0.01) Findings. We demonstrated how the use of a new model of metabolic capability may help to explain physiological changes made by the athlete in response to the coaches intended outcome. In particular, we observed that Malate Aspartate (MAS) has a far greater role to play in retaining the equilibrium within skeletal muscle that allows higher intensity of aerobic exercise to continue in less aerobically friendly conditions.
Abstract| Introduction| Methods| Results| Discussion| Conclusion Practical Applications| References|