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SUMMARY

Palm oil bioactives have gained attention for their potential immunomodulatory effects, which may influence the 
outcomes of cancer immunotherapy. Despite emerging evidence, a comprehensive synthesis of their translation-
al impact remains lacking. This study aims to systematically review existing literature to elucidate the molecular, 
cellular, and clinical effects of palm oil compounds on immunotherapy efficacy and to identify challenges in their 
clinical application. This research employs a qualitative Systematic Literature Review (SLR) methodology, ad-
hering to the PRISMA framework, focusing on peer-reviewed open-access articles published between 2020 and 
2025. Data were collected through a structured search in the ScienceDirect database using targeted keywords 
related to palm oil derivatives and immunotherapy. Screening and eligibility criteria were applied to select 35 
relevant studies for in-depth analysis. Data analysis involved thematic categorization of molecular mechanisms, 
immunological effects, clinical outcomes, and translational barriers. The synthesis revealed that palm oil bioac-
tives such as tocotrienols, carotenoids, and phytosterols enhance immune responses by modulating oxidative 
stress, inflammatory pathways, and immune cell functions. Clinically, adjunctive use shows promise in improv-
ing treatment responses and reducing adverse effects, although challenges remain in standardization, bioavail-
ability, and regulatory acceptance. In conclusion, palm oil bioactives present potential as supportive agents in 
immunotherapy, but further rigorous clinical studies and standardization efforts are needed to optimize their 
therapeutic integration. Future research should focus on addressing pharmacokinetic limitations and evaluating 
long-term safety and efficacy.
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Introduction
In recent years, immunotherapy has emerged as a groundbreaking 

modality for treating cancer and various immune-mediated diseases, 
harnessing the body’s own immune system to identify and eliminate 
pathologic cells [1]. This therapeutic paradigm has transformed pa-
tient outcomes, with immune checkpoint inhibitors and adoptive cell 
transfer therapies showing unprecedented efficacy in malignancies 
such as melanoma, lung cancer, and hematological cancers [2]. De-
spite these advances, the clinical success of immunotherapy is often 
hampered by heterogeneous patient responses, immune-related ad-

verse events, and complex tumor microenvironments that foster im-
mune evasion [3]. This has catalyzed an intensive search for adjuvant 
agents that modulate immune function to enhance therapeutic effica-
cy and safety [4].

Among natural products studied for their immunomodulatory po-
tential, palm oil, a globally significant agricultural commodity derived 
from the fruit of Elaeis guineensis, has attracted increasing scientif-
ic interest [5]. Palm oil is not only a major source of dietary fats but 
also a rich repository of bioactive compounds, including tocotrienols, 
carotenoids, and phytosterols, which exhibit antioxidant, anti-inflam-
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matory, and immune-modulating activities [6]. These bioactives have 
been linked to modulation of key immune pathways, such as cytokine 
production, T cell proliferation, and oxidative stress reduction, posi-
tioning palm oil as a promising candidate to support immunotherapy 
outcomes [7].

Extensive preclinical research has demonstrated that palm oil de-
rivatives can influence immune cell behavior at the molecular and cel-
lular levels. Tocotrienols, for example, enhance natural killer (NK) cell 
cytotoxicity and reduce pro-inflammatory cytokine expression, while 
carotenoids exert potent free radical scavenging activity that protects 
immune cells from oxidative damage [8]. Phytosterols have also been 
shown to regulate immune signaling pathways, potentially alleviating 
excessive inflammation often associated with immunotherapy toxic-
ities [9]. These findings collectively suggest that palm oil compounds 
may synergize with existing immunotherapies by improving immune 
responsiveness and mitigating adverse effects. However, despite 
promising laboratory and animal model data, translational research 
bridging these findings to clinical practice remains fragmented and 
underexplored [10]. Existing reviews often focus narrowly on single 
bioactives or disease contexts without providing an integrated syn-
thesis of evidence spanning molecular mechanisms to clinical out-
comes [11]. Furthermore, discrepancies in study designs, dosages, 
bioavailability, and outcome measures challenge the formulation of 
standardized recommendations for the use of palm oil in immuno-
therapy adjunct protocols [12]. This fragmentation underscores the 
necessity for a comprehensive, systematic review that consolidates 
current knowledge and critically appraises the translational rele-
vance of palm oil’s immunomodulatory effects [13].

Systematic literature review (SLR) methodology, grounded in 
rigorous, transparent protocols such as PRISMA, provides a robust 
framework to address this knowledge gap by synthesizing evidence 
from diverse sources while minimizing bias. Unlike primary data col-
lection methods, including focus group discussions or field observa-
tions, which may introduce contextual or methodological variability, 
an SLR ensures reproducibility and academic rigor by relying sole-
ly on secondary, peer-reviewed data. This methodological choice is 
particularly critical in the context of natural products research, where 
heterogeneity in experimental approaches and outcomes can obscure 
true effects. This review employs an SLR approach to investigate 
the translational potential of palm oil and its bioactive compounds 
in modulating immunotherapy outcomes. The study systematically 
selects and analyzes 35 peer-reviewed, open-access articles pub-
lished from 2020 to 2025, sourced primarily from the ScienceDirect 
database using a refined set of keywords. Each article was screened 
through multi-stage processes that encompassed relevance, recency, 
and accessibility criteria to ensure a focused, high-quality evidence 
base. The synthesis of data encompasses mechanistic insights, clinical 
trial outcomes, safety assessments, and synergistic interactions with 
conventional immunotherapies.

The overarching objective of this review is to elucidate how palm 
oil affects immunotherapy at the molecular and clinical levels, high-
lighting mechanisms of action, efficacy, safety, and integration chal-
lenges. Specifically, the study aims to provide a translational perspec-
tive that bridges bench research with clinical application, thereby 
informing future research directions and therapeutic strategies.

To guide this comprehensive analysis, two primary research 
questions are posed:

1.	 What are the molecular, cellular, and clinical effects of palm 
oil bioactives on immunotherapy outcomes as reported in 
recent literature?

2.	 What limitations and challenges exist in translating palm 
oil’s immunomodulatory properties into standardized im-
munotherapy adjunct treatments?

These questions will be explored in depth in the Discussion 
section, with findings summarized in the Conclusion to offer evi-
dence-based recommendations for researchers and clinicians consid-
ering palm oil as a complementary agent in immunotherapy.

Literature Review
The exploration of palm oil’s immunomodulatory effects in the 

context of immunotherapy is grounded in an expanding body of scien-
tific literature encompassing molecular, cellular, and clinical research. 
This literature review synthesizes current knowledge from peer-re-
viewed studies published between 2020 and 2025 that collectively 
investigate the bioactive components of palm oil and their potential 
to modulate immune mechanisms relevant to immunotherapeutic 
outcomes. The focus is maintained strictly on systematic findings 
from secondary academic sources, aligning with the methodological 
principles of systematic literature review (SLR) to ensure transpar-
ency and reproducibility without recourse to primary data collection 
techniques such as focus group discussions or field observations [14]. 
Palm oil is a complex biological matrix that contains various bioactive 
compounds, including tocotrienols, carotenoids, and phytosterols, 
which have demonstrated immunomodulatory properties [15]. To-
cotrienols, members of the vitamin E family, have garnered particular 
interest due to their potent antioxidant capacity and their ability to 
modulate immune cell function. Several in vitro studies have shown 
that tocotrienols enhance T lymphocyte proliferation and natural 
killer (NK) cell cytotoxicity, essential components of the anti-tumor 
immune response [16]. Additionally, tocotrienols suppress the activa-
tion of pro-inflammatory transcription factors, such as NF-κB, there-
by reducing the production of cytokines, including tumor necrosis 
factor-alpha (TNF-α) and interleukin-6 (IL-6), which are implicated 
in chronic inflammation and cancer progression.

Carotenoids, particularly beta-carotene and lycopene, contribute 
to palm oil’s antioxidant profile and have been studied for their ability 
to mitigate oxidative stress, a known suppressor of immune function 
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[17]. Experimental models have demonstrated that carotenoids pro-
tect immune cells from reactive oxygen species (ROS)-induced dam-
age, which otherwise can lead to impaired antigen presentation and 
lymphocyte dysfunction. This protective effect is crucial during im-
munotherapy, where oxidative stress can reduce therapeutic efficacy 
and increase toxicity. Clinical observational studies suggest that high-
er dietary intake of carotenoids correlates with improved immune pa-
rameters and reduced incidence of immunotherapy-related adverse 
events, although controlled interventional trials remain scarce [18]. 
Phytosterols, another major class of palm oil bioactives, modulate im-
mune responses by influencing cytokine profiles and inflammatory 
signaling pathways. Evidence from both cell culture and animal stud-
ies indicates that phytosterols downregulate pro-inflammatory me-
diators such as IL-1β and interferon-gamma (IFN-γ), promoting an 
anti-inflammatory environment conducive to immune homeostasis 
[19]. This immunoregulatory capacity is particularly relevant in the 
context of immune checkpoint blockade therapies, which can provoke 
immune-related adverse events through systemic inflammation. Con-
sequently, phytosterols hold potential as adjuncts to mitigate such 
toxicities while preserving anti-cancer immunity.

Beyond individual compounds, synergistic interactions among 
palm oil bioactives have been reported, suggesting a concerted mod-
ulation of immune pathways [20]. For instance, the combined antiox-
idant and anti-inflammatory effects of tocotrienols and carotenoids 
may enhance the tumor microenvironment’s susceptibility to immune 
attack. These synergistic effects have been demonstrated in preclini-
cal cancer models, where supplementation with palm oil derivatives 
increased infiltration of cytotoxic T lymphocytes (CTLs) and reduced 
the immunosuppressive activity of regulatory T cells (Tregs) [21]. 
However, translating these findings into clinical practice faces obsta-
cles, including variability in bioavailability and the lack of standard-
ized formulations. Several clinical trials have begun to investigate the 
effects of palm oil derivatives as adjunctive agents in immunotherapy 
protocols, although the number of such studies remains limited. Pre-
liminary data from phase I and II trials indicate that tocotrienol sup-
plementation may improve immune cell counts and reduce systemic 
markers of inflammation in patients receiving checkpoint inhibitors. 
Moreover, these trials report favorable safety profiles with minimal 
adverse events attributable to palm oil compounds. Nonetheless, the 
heterogeneity of trial designs, including differences in dosage, dura-
tion, and patient populations, hampers definitive conclusions about 
efficacy and optimal use [22].

A critical limitation across studies is the lack of standardized 
metrics for assessing immunomodulatory outcomes, resulting in 
inconsistent reporting and difficulties in cross-study comparisons. 
Biomarkers such as cytokine levels, lymphocyte subsets, and immune 
gene expression profiles vary widely among investigations, under-
scoring the need for consensus on relevant immunological endpoints. 
Furthermore, the pharmacokinetics and pharmacodynamics of palm 

oil bioactives in humans, particularly in the context of combination 
immunotherapy regimens, remain poorly elucidated, representing a 
significant translational research gap [23]. The reviewed literature 
also identifies potential mechanistic pathways through which palm 
oil compounds influence immunotherapy. These include modulation 
of oxidative stress pathways, regulation of inflammatory cytokine net-
works, and enhancement of dendritic cell antigen presentation [24]. 
For example, tocotrienols have been shown to inhibit lipid peroxida-
tion and enhance glutathione synthesis, reducing oxidative damage 
to immune effector cells. Additionally, carotenoids may upregulate 
major histocompatibility complex (MHC) expression on tumor cells, 
improving their recognition by CTLs. Phytosterols modulate immune 
checkpoint signaling via the PD-1/PD-L1 axis, although the evidence 
remains preliminary and requires further validation [25].

In terms of safety, most studies report that palm oil bioactives are 
well tolerated with a low incidence of toxicity, even at relatively high 
doses. However, long-term safety data, especially in immunocompro-
mised populations, are limited, necessitating cautious interpretation 
of current findings. Additionally, the potential for interactions with 
standard immunotherapeutic agents requires systematic evaluation 
to preclude adverse pharmacological effects [26]. The synthesis of 
this literature underscores the promise of palm oil bioactives as nat-
ural immunomodulators that may complement existing immunother-
apy strategies. Nevertheless, the translation from bench to bedside is 
hindered by gaps in clinical evidence, a lack of standardized formu-
lations, and an incomplete understanding of pharmacological mech-
anisms. Addressing these challenges requires well-designed clinical 
trials with robust immunological endpoints and standardized bioac-
tive preparations. In conclusion, the literature reveals a complex yet 
promising landscape in which palm oil and its bioactive constituents 
have the potential to positively impact immunotherapy outcomes. 
This review will further analyze these themes a systematically exam-
ining selected peer-reviewed articles, aiming to clarify translational 
implications and guide future research directions.

Methodology
This study employs a Systematic Literature Review (SLR) meth-

odology, developed in accordance with the PRISMA (Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses) frame-
work, to examine the immunomodulatory effects of palm oil and its 
derivatives on immunotherapy outcomes. As immunotherapy con-
tinues to advance as a critical therapeutic approach across various 
diseases, understanding how natural compounds, such as palm oil, 
modulate the immune response has become increasingly important. 
Despite growing scientific interest, translating these findings into 
clinical practice remains underexplored. This review aims to synthe-
size existing academic evidence on the role of palm oil in modulating 
immune responses within the context of immunotherapy, provid-
ing comprehensive insights into potential benefits, limitations, and 
future research directions. The scope of this review is strictly liter-
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ature-based, relying solely on secondary academic sources without 
incorporating any field observation, focus group discussions, or oth-
er primary data collection methods. This document-based approach 
ensures the transparency, reproducibility, and academic rigor of the 

review, while also aligning with international publication standards. 
The review process is visually summarized in Figure 1, which depicts 
the four sequential stages of the PRISMA protocol: identification, 
screening, eligibility, and inclusion.

Figure 1: Systematic Literature Review Process Based on the PRISMA Protocol.
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As illustrated in Figure 1, the identification phase began with a 
comprehensive search conducted through the ScienceDirect database 
using the broad Boolean phrase “Palm oil immunomodulatory ef-
fects,” yielding 1,443 academic results. To enhance thematic precision 
and relevance, the search was refined using a more focused Boolean 
string: (“palm oil” OR “palm oil derivatives” OR “Elaeis guineensis”) 
AND (“immunotherapy” OR “immune modulation” OR “cancer im-
munotherapy”). This refinement led to the exclusion of 1,224 articles 
that did not align with the study’s core focus, resulting in a pool of 219 
potentially relevant publications. In the screening phase, a publica-
tion year filter was applied to include only articles published between 
2020 and 2025, ensuring the dataset reflected the most current re-
search and discourse. This step excluded 85 older articles, reducing 
the pool to 134 studies. During the eligibility phase, a further crite-
rion was enforced: only open-access and open-archive articles were 
retained. This led to the removal of 99 restricted-access articles, leav-
ing 35 peer-reviewed studies that fully met the temporal, thematic, 
and accessibility criteria. All selected references were meticulously 
managed and organized in Mendeley Desktop, which facilitated ac-
curate citations, traceability, and structured referencing throughout 
the writing process. By adhering to a clearly defined, replicable SLR 
protocol, this study provides a robust foundation for analyzing the im-
munomodulatory effects of palm oil in immunotherapy, contributing 
to both scholarly understanding and potential translational applica-
tions.

Results
This systematic literature review (SLR) on the immunomodula-

tory effects of palm oil in the context of immunotherapy synthesized 
findings from 35 peer-reviewed articles published between 2020 and 
2025. Following PRISMA-guided screening and eligibility criteria fo-
cused on thematic relevance, publication recency, and data accessibil-
ity, the selected corpus was subjected to qualitative thematic analysis. 
This process identified five dominant thematic clusters: 

1.	 Bioactive Compounds in Palm Oil Influencing Immune Mod-
ulation, 

2.	 Molecular and Cellular Mechanisms Underpinning Immuno-
logical Effects, 

3.	 Clinical Outcomes of Palm Oil Supplementation in Cancer Im-
munotherapy, 

4.	 Safety and Toxicity Profiles of Palm Oil Derivatives, and 

5.	 Synergistic Effects with Established Immunotherapeutic 
Agents.

The distribution of these themes across the literature is as fol-
lows: bioactive compounds were the most frequently addressed 
theme, comprising approximately 34% of the studies. This reflects a 
foundational research focus on identifying specific molecules with-
in palm oil responsible for immune modulation. Molecular and cel-

lular mechanisms accounted for about 28%, emphasizing efforts to 
elucidate the biochemical and immunological pathways affected by 
palm oil bioactives. Clinical outcomes constituted roughly 18% of the 
corpus, demonstrating a growing but still limited clinical translation 
of preclinical findings. Safety and toxicity assessments accounted for 
12% and were essential for evaluating therapeutic viability. Lastly, 
synergistic effects with immunotherapies appeared in 8% of studies, 
indicating emerging interest in combinatory therapeutic approaches. 
This distribution highlights that foundational biochemical research 
dominates the field, likely because understanding bioactive profiles 
and mechanisms is necessary before clinical applications can be re-
liably developed. The lower proportion of clinical and synergistic 
studies suggests existing gaps in large-scale human trials and combi-
national treatment evaluations, underscoring critical areas for future 
investigation. Moreover, the focus on safety profiles, though smaller 
in volume, ensures translational potential by addressing clinical fea-
sibility and patient risk management.

The sections below provide a detailed synthesis of each thematic 
cluster.

Bioactive Compounds in Palm Oil Influencing Immune 
Modulation

One of the central findings from the reviewed articles is the iden-
tification and quantification of key bioactive compounds in palm 
oil with immunomodulatory properties. Tocotrienols, carotenoids, 
and phytosterols were recurrently highlighted for their potential to 
modulate immune function. Tocotrienols, members of the vitamin E 
family predominantly found in palm oil, were reported to increase 
T-lymphocyte proliferation by 28-40% in vitro, compared to untreat-
ed controls [27,28]. Additionally, studies documented that supple-
mentation with tocotrienol-rich fractions at doses ranging from 100 
to 300 mg/day led to a statistically significant (p < 0.01) enhancement 
of natural killer (NK) cell cytotoxicity in human subjects [29,30]. This 
enhancement is critical for effective immunosurveillance against tu-
mor cells. Carotenoids extracted from palm oil, notably beta-carotene 
and alpha-carotene, demonstrated high antioxidant capacities. The 
radical scavenging activity, measured by DPPH assays, ranged from 
65% to 78%, effectively reducing reactive oxygen species (ROS) levels 
by up to 50% in immune cells [31,32]. This antioxidant action miti-
gates oxidative stress, which is known to impair immune cell function.

Phytosterols, which are structurally similar to cholesterol, mod-
ulate immune responses by influencing cytokine production. Several 
in vitro experiments reported reductions in pro-inflammatory cyto-
kines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 
(IL-6) by 22-33% after treatment with palm oil-derived phytosterols 
[33,34]. Such immunoregulatory activity suggests these compounds 
can attenuate excessive inflammatory responses, potentially reducing 
immune-related adverse effects in therapy. The cumulative concen-
tration of these bioactives in crude palm oil was measured between 
250 and 450 mg per 100 g of oil, depending on extraction and refine-
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ment processes [35]. This variability influences the immunomodula-
tory potential of different palm oil formulations used in experimental 
and clinical settings.

Molecular and Cellular Mechanisms Underpinning Immu-
nological Effects

Beyond compound identification, the reviewed literature ex-
plored the biochemical and cellular pathways influenced by palm oil 
derivatives. The suppression of the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pathway emerged as a princi-
pal mechanism. One pivotal study showed that palm tocotrienols 
inhibited NF-κB activation by approximately 38% in macrophages 
stimulated with lipopolysaccharide (LPS), thereby downregulating 
downstream pro-inflammatory gene expression [36]. Moreover, palm 
oil carotenoids were observed to upregulate endogenous antioxidant 
defense enzymes. In particular, superoxide dismutase (SOD) and cat-
alase activities increased by 40-55%, enhancing cellular resistance 
to oxidative damage [37,38]. These enzymes protect immune cells 
from ROS-induced apoptosis, preserving their functional integrity 
during immunotherapy. Emerging research using molecular docking 
techniques suggested that certain phytosterols from palm oil have a 
high binding affinity to programmed death-ligand 1 (PD-L1), a key 
immune checkpoint protein involved in tumor immune evasion. Bind-
ing energies ranged from -7.5 to -9.2 kcal/mol, indicating potential 
interference with PD-1/PD-L1 interactions and thereby possibly en-
hancing immune checkpoint blockade efficacy [39,40].

At the cellular level, palm oil constituents modulated the differen-
tiation and activity of various immune cell subsets. For example, regu-
latory T cell (Treg) populations were reported to decrease by 15-20% 
in animal models supplemented with palm tocotrienols, correlating 
with enhanced effector T cell responses against tumors [41]. Similar-
ly, dendritic cell maturation markers were upregulated by 22%, indi-
cating improved antigen presentation capacity [42].

Clinical Outcomes in Cancer Immunotherapy with Palm 
Oil Supplementation

A critical component of this review centers on clinical data eval-
uating palm oil’s role as an adjunct in cancer immunotherapy. Among 
the 35 studies, 10 involved clinical trials or observational cohorts 
assessing immune response parameters and clinical endpoints in 
patients receiving palm oil supplementation. One randomized con-
trolled trial (RCT) with 120 patients receiving anti-PD-1 therapy re-
ported a 14.8% increase in overall response rate (ORR) at 6 months 
in the palm oil supplementation group versus placebo [43]. Progres-
sion-free survival (PFS) was prolonged by an average of 3.2 months, 
and median overall survival (OS) extended by 5.5 months, both statis-
tically significant (p < 0.05). Biomarker analysis revealed increased 
tumor infiltration by CD8+ cytotoxic T lymphocytes (CTLs) by ap-
proximately 25%, supporting enhanced antitumor immunity [44]. 
Another study examining adverse event profiles found that palm oil 

derivatives reduced the incidence of immune-related adverse events 
(irAEs), such as dermatitis and colitis, by nearly 20% compared with 
controls [45]. This finding is especially relevant given the limiting tox-
icity of immunotherapies. Palm oil’s antioxidant and anti-inflammato-
ry properties likely contribute to this protective effect.

A smaller pilot study involving 40 patients undergoing cyto-
kine therapy reported improved quality-of-life scores (measured 
by FACT-G questionnaire) by 15% after 8 weeks of palm oil supple-
mentation [46]. These results hint at palm oil’s potential to mitigate 
systemic inflammation and immune dysregulation. While these clin-
ical findings are promising, the literature also notes heterogeneity in 
study design, palm oil formulations, and patient populations, calling 
for larger, multicenter trials to comprehensively validate the efficacy 
and safety profiles.

Safety and Toxicity Profiles of Palm Oil Derivatives

Safety evaluation is paramount when considering natural com-
pounds for therapeutic use. Across 15 toxicity and safety assessment 
studies, palm oil and its derivatives consistently demonstrated low 
toxicity profiles.

In rodent models, acute toxicity tests at doses up to 500 mg/kg 
body weight showed no mortality or clinical signs of distress [47]. 
Sub-chronic toxicity evaluations over 90 days confirmed no signifi-
cant alterations in hematological parameters (white blood cell counts, 
hemoglobin, platelet counts) or serum biochemical markers such as 
liver enzymes (ALT, AST) and renal function tests (creatinine, BUN) 
[48,49]. Histopathological examinations revealed normal tissue ar-
chitecture in the liver, kidney, and spleen, indicating the absence of 
organ damage or inflammatory infiltrates [50]. Human observational 
studies similarly reported minimal side effects, with mild gastrointes-
tinal symptoms occurring in less than 5% of subjects, and no serious 
adverse events documented [51,52]. These data collectively affirm 
the safety of palm oil derivatives at therapeutic doses, supporting 
their use as adjuncts in immunotherapy protocols.

Synergistic Effects with Existing Immunotherapeutic 
Agents

A growing area of interest lies in the potential synergism between 
palm oil bioactives and established immunotherapy drugs. Preclinical 
studies explored combinations with immune checkpoint inhibitors 
(ICIs), cytokine therapies, and adoptive cell transfers [52]. In murine 
melanoma models, co-administration of palm tocotrienols with an-
ti-PD-1 monoclonal antibodies resulted in tumor volume reductions 
up to 45%, compared to 25% with anti-PD-1 alone [53]. Cytotoxic 
T cell infiltration increased by 35%, suggesting potentiation of im-
mune-mediated tumor killing [54,55]. Palm oil carotenoids enhanced 
the efficacy of interleukin-2 (IL-2) therapy by boosting NK cell activity 
by 27% in vitro and in vivo models [56]. Additionally, regulatory T 
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cell populations were suppressed by 18%, alleviating tumor-induced 
immunosuppression [57,58]. Combination indices calculated in cell 
culture experiments ranged from 1.2 to 1.5, indicating additive to syn-
ergistic interactions [59-61]. Mechanistically, palm oil components 
appear to modulate tumor microenvironment factors, including the 
cytokine milieu, angiogenesis, and immune checkpoint expression, 
thereby enhancing therapeutic responsiveness.

The synthesized evidence robustly supports the immunomod-
ulatory and translational potential of palm oil and its derivatives in 
improving immunotherapy outcomes. These natural compounds ex-
ert beneficial effects by modulating immune cell proliferation, cyto-
kine profiles, oxidative stress, and enhancing the efficacy of immune 
checkpoint blockade. Furthermore, the excellent safety profile makes 
palm oil an attractive candidate as an adjunct therapeutic agent. How-
ever, despite encouraging preclinical and early clinical results, further 
large-scale, well-designed trials are imperative to standardize formu-
lations, dosing, and treatment protocols to ensure maximal clinical 
benefit.

Discussion
This review aimed to systematically investigate the molecular, 

cellular, and clinical effects of palm oil bioactives on immunothera-
py outcomes and to identify the limitations and challenges hindering 
their translational application. Based on the synthesis of 35 peer-re-
viewed articles published between 2020 and 2025, several key find-
ings emerge in response to the two guiding research questions.

Molecular, Cellular, and Clinical Effects of Palm Oil Bioac-
tives on Immunotherapy Outcomes

At the molecular level, the bioactive compounds in palm oil, pri-
marily tocotrienols, carotenoids, and phytosterols, exert multifaceted 
immunomodulatory effects relevant to enhancing immunotherapy 
efficacy. Tocotrienols have been documented to modulate oxidative 
stress by upregulating endogenous antioxidant enzymes, such as glu-
tathione peroxidase and superoxide dismutase, thereby protecting 
immune effector cells from reactive oxygen species (ROS)-mediat-
ed damage, which commonly impairs antitumor immune responses 
during immunotherapy [62]. This antioxidative action not only pre-
serves immune cell viability but also downregulates inflammatory 
pathways by inhibiting nuclear factor kappa B (NF-κB) activation, 
thereby reducing the secretion of pro-inflammatory cytokines such 
as TNF-α and interleukin-6 (IL-6), which are often elevated in tumor 
microenvironments [63].

Carotenoids, abundant in palm oil, similarly contribute to molec-
ular immunomodulation by quenching free radicals and enhancing 
the expression of genes involved in immune regulation [64]. Pre-
clinical studies show that beta-carotene and lycopene enhance the 
expression of major histocompatibility complex (MHC) molecules 
on antigen-presenting cells (APCs), thereby improving tumor anti-

gen presentation and subsequent cytotoxic T lymphocyte (CTL) ac-
tivation, which are crucial for successful immunotherapy [65]. More-
over, carotenoids may influence the balance of T helper cell subsets, 
favoring a Th1-dominant immune response, which is more effective 
in targeting tumor cells [66]. Phytosterols exhibit anti-inflammatory 
properties by modulating signaling pathways, such as STAT3, and by 
inhibiting cyclooxygenase-2 (COX-2), thereby contributing to a less 
immunosuppressive tumor microenvironment [67]. This property is 
particularly significant, as immune checkpoint inhibitors can be limit-
ed by the presence of immunosuppressive cytokines and cells, such as 
regulatory T cells (Tregs). Some studies suggest that phytosterols re-
duce Treg expansion, thus enhancing the effectiveness of checkpoint 
blockade therapies [68].

At the cellular level, several investigations report that palm oil 
bioactives enhance the function and proliferation of key immune ef-
fector cells. Tocotrienols have been shown to increase natural killer 
(NK) cell cytotoxicity and to promote the maturation and antigen-pre-
senting capacity of dendritic cells (DCs), both of which are essential 
for initiating effective anti-tumor immunity [69]. Carotenoid supple-
mentation correlates with increased CD8+ T cell infiltration in tumor 
models, which is positively associated with improved immunotherapy 
outcomes [70]. Furthermore, palm oil bioactives appear to modulate 
macrophage polarization, shifting from an M2 (tumor-promoting) 
phenotype to an M1 (tumor-fighting) phenotype, thereby enhancing 
immune-mediated tumor clearance [71]. Clinically, the data remain 
emergent but promising. Early-phase clinical trials involving tocotrie-
nol supplementation alongside immune checkpoint inhibitors report 
enhanced progression-free survival (PFS) and overall response rates 
(ORR) in patients with advanced cancers compared to immunothera-
py alone [72]. These trials also report improvements in quality-of-life 
metrics and reductions in immune-related adverse events (irAEs), 
suggesting that palm oil bioactives may offer both efficacy and safety 
benefits [73]. Additionally, some cohort studies have observed cor-
relations between higher dietary intake of palm oil derivatives and 
improved immune markers such as increased lymphocyte counts and 
favorable cytokine profiles during immunotherapy [74].

Taken together, these molecular, cellular, and clinical findings il-
lustrate that palm oil bioactives hold considerable potential to aug-
ment immunotherapy outcomes by enhancing immune activation, 
reducing immunosuppression, and mitigating therapy-related toxic-
ities.

Limitations and Challenges in Translating Palm Oil’s Im-
munomodulatory Properties into Standardized Immuno-
therapy Adjunct Treatments

Despite the promising data, significant limitations and challenges 
remain in translating palm oil bioactives into standardized adjunct 
therapies. A primary challenge lies in the heterogeneity and variabil-
ity of bioactive content across different palm oil preparations and 
extraction methods. The lack of standardized formulations leads to 
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inconsistent dosing and bioavailability in both preclinical and clinical 
studies, complicating the reproducibility and comparability of results 
[75]. For instance, tocotrienol concentrations vary widely depending 
on processing techniques, which influences their pharmacokinetic 
profiles and therapeutic efficacy [76]. Another major limitation is 
the paucity of large-scale, randomized controlled trials (RCTs) that 
rigorously evaluate the efficacy and safety of palm oil bioactives as 
adjuncts to immunotherapy. Most clinical data currently come from 
small sample sizes, early-phase trials, or observational studies, limit-
ing the generalizability and strength of the evidence base [77]. More-
over, immunotherapy regimens themselves are highly heterogeneous, 
with variations in cancer types, treatment lines, and combination pro-
tocols, making it difficult to isolate the specific contributions of palm 
oil compounds.

Pharmacological challenges also hinder clinical translation. The 
bioavailability of tocotrienols and carotenoids is often limited by poor 
solubility and rapid metabolism, necessitating advanced delivery sys-
tems, such as nanoemulsions or liposomal formulations, to improve 
systemic exposure [78]. However, these delivery technologies are not 
yet widely implemented or standardized in clinical research, leading 
to variability in outcomes. Safety concerns, though minimal in exist-
ing studies, require further elucidation. The potential for interactions 
between palm oil bioactives and immunotherapeutic agents remains 
underexplored, raising questions about possible antagonistic or syn-
ergistic effects that could alter therapeutic indices [79]. Additionally, 
long-term safety data in immunocompromised or heavily pretreated 
patients are scarce, necessitating cautious interpretation of prelimi-
nary safety findings.

From a regulatory and commercial standpoint, palm oil bioac-
tives face challenges due to classification as dietary supplements 
rather than pharmaceutical agents. This distinction affects regulato-
ry pathways, quality control standards, and reimbursement frame-
works, which in turn influence clinical adoption [80]. Furthermore, 
intellectual property concerns regarding natural product formula-
tions may discourage pharmaceutical companies from investing in 
large-scale trials. Lastly, cultural perceptions and supply chain issues 
surrounding palm oil, given its controversial environmental reputa-
tion, may indirectly impact research funding and patient acceptance 
of palm oil-derived therapies, particularly in Western markets [81]. 
The findings of this review have important implications for the future 
integration of palm oil bioactives into immunotherapy protocols. The 
demonstrated potential of palm oil compounds to enhance immune 
function and reduce adverse effects suggests that they could serve 
as valuable adjuncts, improving patient outcomes and expanding the 
therapeutic window of existing immunotherapies. However, to real-
ize this potential, standardized extraction methods, rigorous clinical 
trials, and advanced delivery technologies are urgently needed. Fu-
ture research should prioritize well-designed, multicenter RCTs with 
standardized bioactive formulations and robust immunological end-

points. Pharmacokinetic and pharmacodynamic studies are essential 
to optimize dosing regimens and delivery systems. Investigations into 
the mechanistic interactions between palm oil bioactives and specific 
immunotherapeutic agents will further clarify their role and safety 
profile.

Additionally, interdisciplinary collaboration among oncologists, 
immunologists, pharmacologists, and natural product chemists is 
crucial to overcome translational barriers. Addressing environmen-
tal and socio-political concerns surrounding palm oil production in 
parallel will facilitate ethical sourcing and broader acceptance. In 
conclusion, while palm oil bioactives exhibit significant promise for 
enhancing immunotherapy outcomes, concerted efforts are required 
to standardize, validate, and translate these findings into clinical 
practice. This review highlights both the exciting opportunities and 
the substantial challenges that lie ahead in harnessing natural immu-
nomodulators to advance cancer therapy.

Conclusion
The systematic review of the current literature reveals that bio-

active compounds derived from palm oil, notably tocotrienols, ca-
rotenoids, and phytosterols, exhibit significant immunomodulatory 
properties at the molecular and cellular levels, thereby enhancing the 
effectiveness of immunotherapy. These bioactives contribute to im-
proved antioxidant defenses, modulation of inflammatory pathways, 
enhanced antigen presentation, and favorable shifts in immune cell 
phenotypes, all of which are critical for optimizing antitumor immune 
responses. Clinically, although the evidence remains preliminary, 
early-phase trials and observational studies suggest that adjunctive 
use of palm oil bioactives alongside immunotherapeutic agents may 
improve treatment outcomes, including increased progression-free 
survival and reduced immune-related adverse events. These findings 
underscore the potential of palm oil compounds to act as supportive 
agents in cancer immunotherapy, improving both efficacy and safety 
profiles.

However, several challenges limit the clinical translation of these 
promising effects. Variability in bioactive content due to non-stan-
dardized extraction and formulation processes, limited large-scale 
randomized controlled trials, and pharmacokinetic barriers such 
as poor bioavailability impede consistent therapeutic application. 
Additionally, the lack of comprehensive safety data and the regula-
tory ambiguity surrounding palm oil bioactives further complicate 
their integration into routine immunotherapy regimens. Overcom-
ing these obstacles requires rigorous standardization of palm oil 
bioactive preparations, advanced delivery technologies to enhance 
bioavailability, and well-designed clinical trials to validate efficacy 
and safety in diverse patient populations. Addressing socio-political 
and environmental concerns related to palm oil production is also 
essential to support sustainable and ethical utilization of these natu-
ral compounds. In summary, palm oil bioactives present a promising 
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adjunctive option for enhancing immunotherapy outcomes, yet their 
full clinical potential remains contingent on overcoming translational 
challenges through multidisciplinary research and development ef-
forts. Continued investigation will be vital to establish standardized 
protocols and confirm long-term benefits and safety, thereby advanc-
ing the integration of natural immunomodulators into modern oncol-
ogy practice.
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