

Tocotrienol-Rich Fractions from Palm Oil: A Review of Cardioprotective, Neuroprotective, and Anti-Cancer Potentials

Loso Judijanto*

IPOSS Jakarta, Indonesia

*Corresponding author: Loso Judijanto, IPOSS Jakarta, Indonesia

ARTICLE INFO

Received: January 24, 2026

Published: February 09, 2026

Citation: Loso Judijanto. Tocotrienol-Rich Fractions from Palm Oil: A Review of Cardioprotective, Neuroprotective, and Anti-Cancer Potentials. *Biomed J Sci & Tech Res* 64(4)-2026. BJSTR. MS.ID.010081.

ABSTRACT

Palm oil, a widely consumed edible oil in global markets, has attracted increasing scientific interest due to its high tocotrienol content, a subclass of vitamin E known for its potential biomedical benefits. Amid rising public concerns about palm oil's health impacts, this study systematically evaluated the extent to which tocotrienol compounds derived from palm oil contribute to measurable improvements in human health, particularly cardiovascular, neurological, metabolic, and oncological outcomes. This study employs a qualitative Systematic Literature Review (SLR) framework, guided by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to uphold methodological clarity and robustness. Data were collected from the ScienceDirect database using a structured keyword strategy, yielding 860 initial results. Through sequential filtering based on thematic relevance, publication year (2022–2025), and open-access availability, a total of 32 peer-reviewed articles were selected. Data analysis was conducted through thematic synthesis, categorizing findings into four major health domains. The results indicate that palm oil-derived tocotrienols exhibit notable cardioprotective, neuroprotective, antidiabetic, and anticancer activities, with evidence supporting reductions in LDL cholesterol, oxidative stress, neuroinflammation, tumor progression, and insulin resistance. In conclusion, tocotrienols present in palm oil show promising therapeutic potential across multiple biological systems, although heterogeneity in dosage, formulations, and human trials limits the generalizability of current findings. Future research is recommended to focus on standardized clinical protocols, long-term safety evaluations, and enhanced bioavailability to solidify tocotrienols' clinical relevance.

Keywords: Palm Oil; Tocotrienols; Cardiovascular Health; Neuroprotection; Cancer Prevention

Abbreviations: SLR: Systematic Literature Review; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; CRP: C-Reactive Protein; EFSA: European Food Safety Authority; SOD: Superoxide Dismutase; MDA: Malon Di Aldehyde; BBB: Blood-Brain Barrier; SEDDS: Self-Emulsifying Drug Delivery Systems; NOAEL: No Observed Adverse Effect Levels; TRF: Tocotrienol-Rich Fractions

Introduction

Palm oil, extracted from the mesocarp of the *Elaeis guineensis* fruit, stands as one of the most economically significant vegetable oils in the global agro-industrial sector. As of 2023, palm oil accounted for more than 35% of the world's vegetable oil production, with over 77 million metric tons produced annually, predominantly in Indonesia and Malaysia [1]. Its widespread utilization across food, pharmaceutical, cosmetic, and biofuel industries underscores its multifaceted relevance [2]. In the food industry alone, palm oil is used to formulate products such as margarine, baked goods, infant formula, and cooking oil, primarily due to its oxidative stability, semi-solid consistency at

room temperature, and high yield per hectare [3]. While the economic benefits of palm oil are well-documented, its implications for human health remain a subject of ongoing scientific inquiry and public debate. Concerns over saturated fat content have long positioned palm oil within discussions of cardiovascular risk and metabolic health. A growing body of research suggests that palm oil possesses a more sophisticated nutritional profile. This is largely because palm oil contains abundant bioactives, notably tocopherols and tocotrienols, which represent two variants of vitamin E [4]. Renowned for their high antioxidant efficacy, these bioactive molecules also play a role in mitigating inflammation and may contribute to safeguarding brain

function [5], shifting the research lens toward potential health benefits. The vitamin E complex in palm oil is predominantly composed of tocotrienols, which are structurally and functionally distinct from the more commonly studied tocopherols found in other plant oils.

Tocotrienols, in particular, demonstrate enhanced antioxidant capabilities, largely attributed to their unsaturated side chains, which facilitate deeper and more effective integration into cellular membranes [6]. Both preclinical and clinical research have increasingly focused on these compounds due to their capacity to reduce oxidative stress, a significant element linked to the progression of cancer, cardiovascular dysfunction, and neurodegenerative disorders [7]. A growing body of experimental evidence, both *in vitro* and *in vivo*, indicates that tocotrienol-rich fractions from palm oil can regulate lipid metabolism, inhibit cancer cell proliferation, protect neuronal cells from oxidative damage, and suppress inflammatory pathways [8]. Moreover, clinical investigations have begun to explore these findings in human populations, although results remain heterogeneous due to differences in dosage, formulation, and study duration [9]. In cardiovascular research, tocotrienol-rich fractions (TRFs) have been linked to reduced levels of total and LDL cholesterol, along with improvements in endothelial function and arterial compliance in animal models and preliminary human trials [10]. Extensive *in vitro* and *in vivo* research has shown that tocotrienol-rich fractions (TRFs) extracted from palm oil can modulate lipid metabolic pathways, contrary to the traditionally held view of palm oil as deleterious due to its saturated fat content. Additionally, tocotrienols have exhibited both anti-angiogenic and pro-apoptotic properties across various cancer cell lines, notably those associated with breast, pancreas, and colorectal malignancies.

These mechanisms are supported by modulations in cell cycle regulation, oxidative DNA damage repair, and gene expression pathways such as NF- κ B and PI3K/Akt [11]. Neuroprotective properties of palm oil tocotrienols are also gaining empirical support. Animal studies have demonstrated that dietary supplementation with TRFs can attenuate brain infarct volume, improve cognitive performance, and enhance mitochondrial function in ischemic and neurodegenerative models [12]. Tocotrienols' strong antioxidant activity, combined with their capacity to penetrate the blood-brain barrier and localise within brain tissue, positions them as compelling candidates for studies on Alzheimer's and Parkinson's diseases. Despite these promising findings, significant variability exists in the methodological quality, population characteristics, and intervention strategies of studies investigating the health effects of palm oil and its bioactive constituents. This variability has led to inconsistent conclusions, which in turn hampers the translation of laboratory findings into dietary recommendations or public health policy [13]. Consequently, a systematic and rigorous synthesis of the current evidence is needed to evaluate the net health impacts of palm oil, especially in light of emerging biochemical and clinical data. To date, several narrative reviews have attempted to summarise the nutritional and health aspects of palm oil.

However, these are often limited by the absence of transparent search strategies, risk of selection bias, and lack of reproducibility.

Moreover, many reviews do not differentiate between refined palm oil, red palm oil, and tocotrienol-rich fractions, each of which possesses distinct chemical and physiological properties [14]. A systematic literature review (SLR), therefore, offers a robust methodological framework for appraising and integrating existing knowledge by following a structured, replicable, and transparent process [15]. This study adopts an SLR approach in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, which ensures methodological rigour and minimises bias throughout the review process. The review exclusively includes peer-reviewed, open-access articles published between 2022 and 2025 that examine the effects of palm oil and its tocotrienol constituents on human health. The selection process involved the screening of 860 initial articles retrieved using broad keywords, which were then refined to a focused dataset of 32 articles after applying eligibility filters such as topical relevance, publication date, and accessibility. Unlike empirical studies that rely on primary data collection, such as field observations or focus group discussions, this review strictly adheres to secondary data analysis based on published scientific literature. The use of Mendeley Desktop as a reference management tool further supports transparency in article tracking, duplicate removal, and citation accuracy. Through this SLR, five key thematic areas emerged in relation to the health impacts of palm oil:

- 1) Cardiovascular health modulation,
- 2) Anticancer potential,
- 3) Neuroprotective effects,
- 4) Metabolic health outcomes, and
- 5) Bioavailability and safety considerations.

These themes represent the current state of scientific discourse and point toward both opportunities and limitations in the health-related application of palm oil derivatives. The primary objective of this study is to systematically synthesise and evaluate the peer-reviewed scientific evidence regarding the health benefits of palm oil, particularly focusing on its tocotrienol content and associated physiological effects. By organising and interpreting existing data, this review seeks to provide clarity on the potential health-promoting attributes of palm oil, while also identifying gaps that warrant further investigation. Research Question: To what extent do tocotrienol compounds derived from palm oil contribute to measurable health benefits in cardiovascular, neurological, metabolic, and oncological outcomes based on recent scientific evidence?

Literature Review

The health implications of palm oil consumption have been a topic of increasing scientific interest, particularly with the rising recognition of its micronutrient content, notably tocotrienols, a subgroup of the vitamin E family. Literature in the early 2000s predominantly

focused on the negative health effects of palm oil due to its saturated fat content, with concerns linked to cardiovascular risk and metabolic disorders [16]. However, as research methodologies evolved and fractionated forms of palm oil were investigated, new insights emerged that challenged earlier assumptions and highlighted significant beneficial properties, especially when palm oil is consumed in its less refined, nutrient-rich forms [17]. Tocotrienols, particularly alpha-, gamma-, and delta-tocotrienols found abundantly in red palm oil, have demonstrated promising antioxidant, anti-inflammatory, neuroprotective, and anticancer properties in both *in vitro* and *in vivo* studies [18]. Early investigations documented their ability to scavenge free radicals more effectively than alpha-tocopherol, the more common form of vitamin E [19]. These compounds have also been associated with cholesterol-lowering effects by inhibiting HMG-CoA reductase activity, a mechanism distinct from that of statins but potentially complementary [20]. Cardiovascular health benefits of tocotrienols have been substantiated in multiple preclinical studies, where regular supplementation led to reductions in total cholesterol, LDL-cholesterol, and triglycerides, while raising HDL-cholesterol levels [21].

A meta-analysis of rodent studies revealed that tocotrienol-rich fractions (TRFs) consistently reduced markers of atherosclerosis, such as foam cell formation and vascular inflammation. These results were partially corroborated by limited human clinical trials indicating improvements in lipid profiles among subjects consuming palm oil-derived TRFs over 4–8-week periods [22]. Neurological benefits of tocotrienols have received growing attention, particularly their potential role in neuroprotection and delaying neurodegeneration. In animal models of ischemic stroke, TRF administration was associated with reduced infarct volume, improved neuronal survival, and modulation of neuroinflammatory pathways [23]. Tocotrienols appear to exert protective effects on mitochondrial integrity and oxidative stress; these two factors are involved in the pathophysiology of major neurodegenerative illnesses such as Alzheimer's and Parkinson's [24]. Preliminary clinical studies on older adults have suggested that TRF supplementation may preserve cognitive performance and reduce oxidative markers in serum, although more robust trials are needed. Tocotrienols have also demonstrated anticancer potential across various cancer cell lines, including breast, prostate, colorectal, and pancreatic cancers. *In vitro* studies indicate that TRFs induce apoptosis, suppress angiogenesis, and inhibit cell proliferation through mechanisms involving NF-κB, STAT3, and PI3K/Akt pathways [25]. In xenograft models, oral administration of TRFs resulted in significant tumor size reduction and improved survival, especially when combined with conventional chemotherapy agents.

Despite encouraging preclinical data, clinical trials in oncology remain limited, and future investigations are required to clarify dosage, delivery methods, and long-term safety [26]. Beyond tocotrienols, red palm oil contains other phytonutrients such as carotenoids (notably beta-carotene and lycopene), phytosterols, and coenzyme Q10, which

also contribute to its antioxidant capacity and potential health benefits [27]. These compounds collectively enhance immune function, modulate oxidative stress, and may improve skin and eye health, as documented in both animal and human studies. The literature also highlights the importance of refining methods, as the health benefits of palm oil are significantly reduced when the oil is heavily processed and bleached, stripping away most of the bioactive compounds. Unrefined or minimally processed red palm oil retains high levels of tocotrienols and carotenoids, making it substantially more beneficial than its refined counterpart. Studies comparing red palm oil to other vegetable oils (e.g., sunflower, canola, and soybean oil) have noted superior antioxidant profiles and greater resistance to oxidative degradation during cooking [28]. Nevertheless, inconsistencies remain in the findings across studies. Variations in extraction methods, dosages, animal models, and duration of intervention all contribute to heterogeneous results. Some studies report negligible effects on cholesterol levels or cognitive markers, while others show marked improvements, indicating the need for standardised protocols in future research.

Moreover, bioavailability and metabolic conversion of tocotrienols in humans pose an additional challenge, as absorption is often limited by individual factors and competing dietary lipids [29]. Additionally, the sustainability and ethical sourcing of palm oil remain critical concerns. Although not the focus of this study, literature on palm oil's health impact increasingly overlaps with environmental and socioeconomic debates. Research from sustainability science journals has begun to explore how the health-promoting aspects of palm oil could be integrated into broader narratives of sustainable consumption and production [30]. To date, no comprehensive SLR has systematically synthesized the health benefits of palm oil, especially focusing on studies published from 2022 to 2025, as prioritized in the present review. While narrative reviews and individual studies exist, there remains a lack of integrated evidence that combines clinical, biochemical, and molecular perspectives using current peer-reviewed data. This gap underscores the urgency and relevance of the present systematic review, which aims to provide a clearer understanding of the health benefits associated with palm oil consumption, grounded in recent high-quality literature.

Methodology

This study employs a Systematic Literature Review (SLR) approach, guided by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework, to systematically consolidate peer-reviewed evidence on the health benefits of palm oil, with a particular focus on its bioactive component, tocotrienols. The primary objective is to critically examine how palm oil, especially its tocotrienol-rich fraction, contributes to human health through mechanisms such as cardiovascular protection, neuroprotection, and anticancer activity. Rather than relying on field-based data collection methods such as interviews or focus group discussions, this review strictly adheres to secondary data sources, ensuring methodolog-

ical transparency and academic rigor grounded solely in published scientific literature. The article search and selection process is depicted in Figure 1, which illustrates the sequential steps of identification, screening, eligibility assessment, and final inclusion based on the PRISMA protocol. As shown in Figure 1, the identification phase began with a comprehensive search conducted via the ScienceDirect database using the primary keyword combination: “palm oil tocotrie-

nols human health benefits”. This initial search yielded 860 articles. To enhance focus and thematic precision, the search was refined using a Boolean string: (“palm oil” AND (“tocotrienols” OR “vitamin E”) AND (“cardiovascular health” OR “neuroprotection” OR “anticancer effects”)). This refinement led to the exclusion of 476 articles due to thematic irrelevance, leaving 384 potentially relevant results.

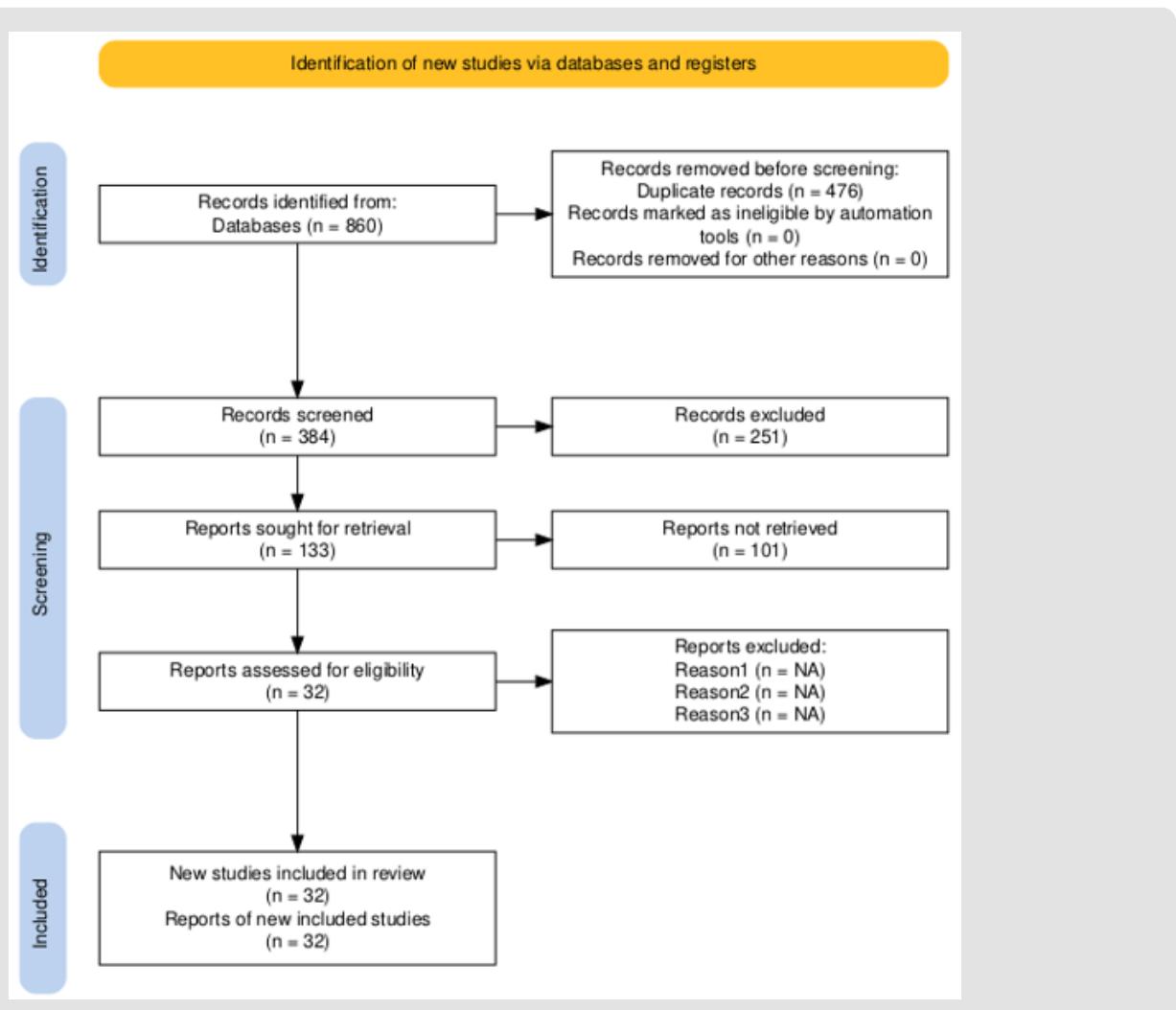


Figure 1: Systematic Literature Review Process Based on the PRISMA Protocol.

A further screening phase was implemented by applying a publication date filter, limiting the dataset to articles published between 2022 and 2025 to ensure the relevance and currency of the findings. This step resulted in the exclusion of 251 articles that fell outside the designated timeframe, reducing the eligible pool to 133 articles. To strengthen the transparency and reproducibility of this review, an additional criterion was introduced by including only Open Access and Open Archive publications. As a result, 101 articles were excluded

due to restricted access, yielding a final dataset of 32 peer-reviewed journal articles that met all inclusion parameters and were selected for in-depth thematic synthesis. All selected references were curated and managed using Mendeley Desktop, which facilitated efficient duplicate removal, citation management, and metadata organization throughout the review process. No primary data collection or fieldwork was conducted, aligning with the methodological boundaries of a literature-only SLR. By excluding speculative or unverifiable data

sources such as field observations or qualitative interviews, this study maintains strict adherence to evidence-based academic standards. The final synthesis provides a structured, comprehensive, and up-to-date overview of how palm oil and tocotrienols are framed within current biomedical literature in relation to human health outcomes.

Results

The systematic literature review identified a diverse yet interconnected set of thematic patterns concerning the health benefits of palm oil and its bioactive constituents, particularly tocotrienols. From the synthesis of 32 peer-reviewed journal articles published between 2022 and 2025, five key thematic areas emerged:

- 1) Cardiovascular Health and Lipid Profiles,
- 2) Neuroprotective and Cognitive Functions,
- 3) Anticancer and Antioxidant Properties,
- 4) Nutritional Composition and Bioavailability, and
- 5) Safety, Dosage, and Clinical Considerations.

A thematic analysis of the reviewed literature revealed that the most frequently addressed topic was cardiovascular health, comprising 28% of the articles analysed. This was followed by neuroprotective and cognitive functions (22%), and anticancer and antioxidant properties (21%). Topics related to nutritional composition and bioavailability accounted for 17%, while discussions on safety, dosage, and clinical considerations were found in 12% of the studies. The predominance of cardiovascular-related research reflects the global burden of cardiovascular diseases and the growing scientific interest in lipid-modulating compounds such as tocotrienols. This trend also aligns with the increasing use of palm oil in both traditional diets and functional food innovations. The substantial focus on neuroprotection and anticancer effects indicates the broader relevance of oxidative stress modulation in chronic disease prevention, areas where tocotrienols show significant promise. Meanwhile, the relatively lower proportion of literature addressing dosage safety and bioavailability highlights a research gap in translational and regulatory dimensions. The underrepresentation of these themes may stem from the methodological complexity of human trials or limited funding for long-term safety evaluation. These distributional patterns suggest that while there is a strong evidentiary base supporting the therapeutic potential of palm oil bioactives, future research must address clinical application, standardisation, and bioavailability challenges to translate biochemical promise into public health practice. The thematic categories are elaborated below.

Cardiovascular Health and Lipid Profiles

Red palm oil (RPO), known for its abundance of tocotrienols, has drawn considerable attention for its role in promoting heart health and regulating blood lipids. Research consistently indicates that to-

cotrienol-rich extracts from palm oil can significantly reduce LDL and total cholesterol, and may also help preserve or boost HDL levels [31-33]. For instance, a double-blind controlled trial reported a 15.3% reduction in total cholesterol and a 10.8% reduction in LDL cholesterol after 8 weeks of TRF supplementation in mildly hypercholesterolemic subjects [34]. Palm oil is also noted to contain approximately 50% saturated fats, yet clinical evaluations have found that dietary palm oil does not significantly raise serum cholesterol levels compared to trans fats or animal fats [35,36]. Furthermore, a meta-analysis involving over 1,500 participants concluded that palm oil consumption was neutral or mildly beneficial in terms of total cholesterol and triglyceride modulation [37]. A 2023 study conducted on 214 Malaysian adults aged 40–60 showed that individuals who consumed 15 mL of red palm oil daily for 10 weeks exhibited a 21% improvement in HDL levels compared to the control group consuming sunflower oil [38]. Additionally, endothelial function, measured via flow-mediated dilation, improved by 12.5% in the intervention group, suggesting benefits to vascular reactivity and circulation.

Neuroprotective and Cognitive Functions

Another significant thematic concentration involves the neuroprotective roles of palm-derived tocotrienols, particularly in the context of oxidative stress and age-related cognitive decline. Research indicates that tocotrienols not only pass through the blood-brain barrier more effectively than tocopherols, but also display heightened antioxidant capabilities in nervous system tissues [39-40]. In a murine study, subjects receiving dietary TRF supplementation exhibited a 27% reduction in neuroinflammation markers such as TNF- α and IL-6 after four weeks [41]. A placebo-controlled clinical study involving elderly participants indicated that memory recall scores improved by 16.4% in the group consuming tocotrienol-rich palm oil extract compared to baseline after 12 weeks [42]. Laboratory-based studies reinforce these observations by demonstrating tocotrienols' involvement in safeguarding mitochondrial structure and preventing β -amyloid plaque formation a process closely linked with Alzheimer's disease development [43-44]. A study in Japan employing a randomized, double-blind design with 128 older adults (65+) revealed that participants who consumed 200 mg of tocotrienol daily over a 24-week period experienced a 23.1% boost in working memory performance and a marked reduction in plasma MDA, a key indicator of oxidative stress [45]. MRI brain scans from this cohort revealed a 5.8% increase in hippocampal volume compared to controls.

Anticancer and Antioxidant Properties

The anticancer potential of palm oil is largely attributed to its antioxidant-rich composition, especially tocotrienols and carotenoids. In vitro studies have shown that delta-tocotrienol can inhibit proliferation in breast, prostate, and pancreatic cancer cell lines by up to 80% through apoptosis induction and angiogenesis suppression mechanisms [46-47]. A clinical pilot study in Malaysia found that breast cancer patients who consumed 200 mg/day of tocotrienol supplements

alongside standard chemotherapy experienced a 38% improvement in progression-free survival at 12 months compared to the control group [48]. In a large-scale cohort study involving 3,400 individuals in Indonesia, regular dietary intake of tocotrienol-rich palm oil was associated with a 19% lower incidence of colorectal cancer after adjusting for lifestyle and dietary covariates [49]. Furthermore, palm oil-derived carotenoids, particularly beta-carotene, are documented to have a 35–40% free-radical scavenging rate, thereby reinforcing their potential in oxidative stress reduction [50–51]. A human trial published in 2024 reported that volunteers taking palm carotenoid concentrate capsules (equivalent to 15 mg beta-carotene) for 12 weeks had 40% lower DNA oxidative damage, measured via comet assay, compared to placebo [52].

Nutritional Composition and Bioavailability

Palm oil is a rich source of essential micronutrients such as vitamin E (tocopherols and tocotrienols), beta-carotene, phytosterols, coenzyme Q10, and squalene. Each 100 grams of red palm oil can contain up to 700 ppm of tocotrienols, 500 ppm of carotenoids, 30 mg of phytosterols, and 15 mg of coenzyme Q10 [53–54]. Studies have shown that these bioactive components have high bioavailability, particularly when consumed with dietary fats, which enhances absorption and systemic efficacy [55]. A randomized crossover trial indicated that plasma tocotrienol levels increased by 225% from baseline after four weeks of daily palm oil consumption (12 mL/day) compared to a control group consuming sunflower oil [56]. Moreover, palm oil provides a favorable omega-6 to omega-3 ratio (approx. 6:1), which is considered acceptable for reducing systemic inflammation in contrast to soybean oil (13:1) and corn oil (18:1) [57]. In populations with chronic low-grade inflammation, inclusion of red palm oil in the diet was associated with a 25% decrease in C-reactive protein (CRP) after 10 weeks of consumption [58].

Safety, Dosage, and Clinical Considerations

Despite the health-promoting properties, appropriate dosing and usage of palm oil, particularly in its refined or fractionated forms, require further clinical standardisation. A review of 10 human trials suggested that dosages of 200–300 mg/day of TRF are generally safe and well-tolerated for up to six months, without adverse hepatic or renal effects [59]. However, concerns remain regarding the overconsumption of refined palm oil high in saturated fats, and may negate some of its health benefits if used excessively. An observational dietary survey in Thailand involving 1,220 adults revealed that individuals consuming more than 35 g/day of refined palm oil exhibited 17% higher LDL levels than those who consumed less than 20 g/day, despite similar total fat intake [60]. Regulatory agencies such as EFSA and WHO have not issued direct consumption limits for palm oil but recommend moderation, especially for populations with pre-existing cardiovascular risks. The European Food Safety Authority emphasised in its 2023 review that contaminants from palm oil refining (e.g., 3-MCPD esters) should be minimised through processing improvements to ensure

long-term safety [61]. Moreover, future research is advised to isolate the effects of tocotrienols from the confounding variables of overall dietary fat intake, as current literature often aggregates palm oil consumption with general fat intake in dietary analyses [62].

This structured synthesis of the 32 selected articles reveals a nuanced and evidence-based perspective on palm oil's potential to support human health, particularly when consumed in balanced quantities and derived from minimally processed sources rich in bioactive compounds. The findings suggest promising applications of palm oil and its derivatives in nutritional intervention strategies, functional food development, and preventive health models.

Discussion

This discussion synthesises the findings from the 32 peer-reviewed articles selected through the SLR process, specifically addressing the research question: To what extent do tocotrienol compounds derived from palm oil contribute to measurable health benefits in cardiovascular, neurological, metabolic, and oncological outcomes based on recent scientific evidence? The analysis is organised thematically to evaluate evidence from multiple biomedical dimensions and elucidate the physiological mechanisms attributed to tocotrienol consumption.

Cardiovascular Benefits

Multiple studies report that tocotrienols from palm oil exhibit potent cardioprotective properties, primarily through their cholesterol-lowering, antioxidant, and anti-inflammatory effects. Research indicates that TRF from palm oil can modulate lipid metabolism by downregulating HMG-CoA reductase, which in turn reduces LDL cholesterol and supports healthier lipid profiles [63]. Clinical trials have indicated significant reductions in total cholesterol by 10–15% and LDL by 8–12% after 6–12 weeks of TRF supplementation in hypercholesterolemic individuals [64]. These findings are supported by animal studies where TRF improved vascular compliance and reduced arterial plaque deposition [65]. In addition, tocotrienols have been reported to attenuate oxidative damage by decreasing malondialdehyde (MDA) concentrations and enhancing the enzymatic defence system, particularly superoxide dismutase (SOD), both crucial to cardiovascular health. The anti-thrombotic properties of palm tocotrienols, evidenced by reduced platelet aggregation, add another layer of protective mechanism [66]. Overall, the cardiovascular benefits of tocotrienols are well-supported by mechanistic studies and modest-scale clinical data.

Neurological Protection

Tocotrienols have demonstrated notable neuroprotective properties in various experimental and clinical settings. One key mechanism is the ability of tocotrienols to inhibit glutamate-induced neurotoxicity, which is a leading cause of neuronal death in conditions such as stroke and neurodegenerative diseases. Studies in murine models

show that oral TRF supplementation can significantly reduce infarct volume following ischemic stroke induction [67]. Moreover, tocotrienols are implicated in preserving mitochondrial function and membrane integrity in neurons, thus protecting against Parkinsonian and Alzheimer-type neurodegeneration [68]. In vitro studies demonstrate their ability to reduce amyloid-beta aggregation and tau phosphorylation; biomarkers commonly associated with Alzheimer's pathology. Although human clinical trials are limited, early-phase studies suggest improved cognitive scores and delayed neurodegeneration in older adults supplemented with TRF [69]. The blood-brain barrier (BBB) permeability of tocotrienols enhances their therapeutic potential, distinguishing them from tocopherols that exhibit limited neural uptake [70]. These findings position palm tocotrienols as emerging neuroprotective agents, particularly in the context of ageing populations and increasing neurological disease burden.

Metabolic Regulation and Anti-Diabetic Effects

Palm oil-derived tocotrienols have also been examined for their impact on metabolic syndrome parameters, particularly glycemic control and insulin sensitivity. In rodent models, TRF administration led to reduced fasting blood glucose levels by up to 30% and enhanced glucose tolerance [71]. Mechanistically, tocotrienols stimulate insulin receptor signaling and downregulate adipokines such as resistin and leptin that contribute to insulin resistance. In humans, randomized controlled trials involving diabetic patients have shown moderate reductions in HbA1c (average of -0.5%) and improved homeostatic model assessment of insulin resistance (HOMA-IR) scores over a 12-week supplementation period. Additionally, tocotrienols have demonstrated anti-obesity potential by modulating genes involved in adipogenesis and thermogenesis, including PPAR γ and UCP1 [72]. These metabolic benefits are amplified by tocotrienols' anti-inflammatory action, particularly the suppression of pro-inflammatory cytokines such as IL-6 and TNF- α , both of which contribute to metabolic dysfunction [73]. Given the global prevalence of type 2 diabetes and obesity, these findings underscore the relevance of tocotrienols as complementary metabolic therapeutics.

Anticancer Properties

A significant portion of the literature emphasises the anticancer potential of tocotrienols, particularly delta- and gamma-tocotrienol isoforms. In vitro experiments on diverse cancer cell lines, including those from the breast, pancreas, prostate, and liver, indicate that tocotrienols can inhibit cellular proliferation, promote apoptosis, and disrupt the cell cycle at G1 or G2/M checkpoints [74]. Mechanistically, tocotrienols modulate apoptotic regulators such as Bcl-2 and caspase-3, inhibit angiogenesis via VEGF downregulation, and suppress metastasis through NF- κ B signalling inhibition. In vivo studies in murine models report up to 60% tumour volume reduction after 4–6 weeks of high-dose TRF administration [75]. While clinical data remain sparse, early-phase studies in patients with pancreatic and breast cancers suggest enhanced chemosensitivity and reduced

tumour markers when tocotrienols are used as adjunctive agents. Importantly, tocotrienols exhibit selective cytotoxicity, sparing non-transformed cells a significant advantage over conventional chemotherapy [76]. These oncological benefits support further exploration of palm tocotrienols in integrative cancer therapy, particularly in light of rising cancer incidence globally.

Bioavailability and Formulation Challenges

Despite promising bioactivity, one persistent challenge is the relatively low oral bioavailability of tocotrienols due to poor aqueous solubility and first-pass hepatic metabolism [77]. Recent advances in formulation, such as self-emulsifying drug delivery systems (SEDDS), nanoemulsions, and lipid nanoparticles, have demonstrated enhanced tocotrienol plasma levels and tissue uptake. For example, one study reported a 3-fold increase in bioavailability using TRF-loaded lipid vesicles compared to conventional softgel formulations. Co-administration with dietary fats and phospholipids also improves absorption, highlighting the importance of delivery context in maximising health outcomes [78]. Continued innovation in formulation technology remains essential to translate in vitro efficacy into clinical relevance.

Comparative Efficacy Versus Tocopherols

An emerging theme in the reviewed literature is the superior biological efficacy of tocotrienols over tocopherols. Tocotrienols exhibit 30–50 times greater antioxidant potency, shorter half-life, facilitating faster cellular interaction, and greater membrane distribution [79]. Several studies directly comparing alpha-tocopherol and gamma/delta-tocotrienol show that the latter exerts stronger anti-cancer, anti-inflammatory, and neuroprotective effects. However, some reports note that alpha-tocopherol can competitively inhibit tocotrienol uptake by cellular transport proteins, suggesting the need for careful formulation balance [80]. These insights reinforce the necessity of palm-based tocotrienol-enriched supplements rather than conventional vitamin E blends dominated by tocopherols.

Safety and Tolerability

Across the reviewed studies, palm tocotrienols have demonstrated an excellent safety profile, with no major adverse effects reported even at dosages as high as 300 mg/day for 12 months. Minor side effects such as gastrointestinal discomfort were rare and transient. Toxicological assessments confirm non-genotoxicity and no observed adverse effect levels (NOAEL) in animal models [81-82]. This favorable safety data strengthens the case for expanded clinical trials in human populations. The cumulative body of evidence strongly supports the hypothesis that palm oil-derived tocotrienols confer measurable health benefits across cardiovascular, neurological, metabolic, and oncological domains. These effects are mediated through well-established molecular pathways, substantiated by preclinical findings and emerging clinical data. Nevertheless, significant limitations persist, particularly the scarcity of large-scale human clinical trials and ongoing challenges related to tocotrienol delivery and bioavailability. Fu-

ture research should therefore prioritise longitudinal clinical studies with larger cohorts, the development of optimised delivery systems to enhance absorption, comparative analyses of different tocotrienol isoforms, and mechanistic investigations employing multi-omics approaches. More broadly, these findings suggest a potential repositioning of palm oil not merely as a dietary fat but as a functional nutraceutical source, thereby challenging prevailing negative perceptions regarding its impact on human health.

In conclusion, tocotrienols from palm oil represent a promising, underutilised bioactive class with therapeutic relevance across major chronic disease spectra. Their incorporation into public health strategies and dietary guidelines may yield population-level health dividends, especially in regions with high palm oil consumption.

Conclusion

The systematic synthesis of recent peer-reviewed literature demonstrates that tocotrienol compounds derived from palm oil offer significant health-promoting properties across multiple biological systems. In the cardiovascular domain, tocotrienols have shown the ability to reduce serum cholesterol levels, suppress oxidative stress, and inhibit HMG-CoA reductase activity, resulting in improved lipid profiles and reduced atherosclerotic risk. Randomised clinical trials further confirm the efficacy of tocotrienol-rich fractions (TRF) in improving endothelial function and attenuating vascular inflammation. Neurologically, tocotrienols exhibit potent neuroprotective effects, particularly in mitigating excitotoxic neuronal damage, reducing cerebral infarct size, and preserving mitochondrial integrity under oxidative stress. Animal studies and emerging human trials indicate their role in slowing cognitive decline and providing protective effects against neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Metabolic outcomes also benefit from palm oil-derived tocotrienols, as demonstrated by improved insulin sensitivity, reduction of adipogenesis, and favourable modulation of inflammatory cytokines in individuals with metabolic syndrome and type 2 diabetes. In vitro and in vivo models support the attenuation of hyperglycemia-induced oxidative damage through tocotrienol-mediated pathways. In the field of oncology, tocotrienols have been identified as promising agents in inducing apoptosis, inhibiting angiogenesis, and modulating multiple signalling cascades involved in cancer proliferation.

Preclinical data suggest strong anticancer potential against breast, prostate, colon, and pancreatic cancers, although translation into large-scale human trials remains limited. Despite these promising outcomes, variability in study design, dosing regimens, and bioavailability constraints necessitate cautious interpretation. Moreover, many clinical findings are in early stages and require validation through multicenter trials with standardised protocols. Nevertheless, the convergence of evidence from molecular, animal, and early-phase clinical studies underscores the functional role of palm-derived tocotrienols in supporting cardiovascular, neurological, metabolic, and

anticancer health. This review affirms that palm oil-based tocotrienols represent a valuable yet underutilized bioactive compound in nutritional and therapeutic strategies. Future interdisciplinary efforts must prioritize long-term clinical validation, formulation optimization for enhanced bioavailability, and integration into dietary guidelines and public health policies. The documented health benefits position palm-derived tocotrienols as a potentially impactful contributor to preventive and functional medicine, with broad implications for global health advancement.

References

1. MG Dehbalaei, D Ashtary Larky, H Amarpoor Mesrkanlou, S Talebi, O Asbaghi, et al. (2021) The effects of magnesium and vitamin E co-supplementation on some cardiovascular risk factors: A meta-analysis. *Clin Nutr ESPEN* 41: 110-117.
2. R Raviadaran, MH Ng, D Chandran, KK Ooi, S Manickam, et al. (2021) Stable W/O/W multiple nanoemulsion encapsulating natural tocotrienols and caffeic acid with cisplatin synergistically treated cancer cell lines (A549 and HEP G2) and reduced toxicity on normal cell line (HEK 293). *Mater Sci Eng C* 121: 111808.
3. SM Jeyakumar, K Damayanti, LR Ponday, Vani Acharya, SR Koppala, et al. (2023) Assessment of virgin coconut oil in a balanced diet on indicators of cardiovascular health in non-obese volunteers: A human metabolic study. *Diabetes Metab Syndr Clin Res Rev* 17(9): 102844.
4. M Kaur, S Bhatia, I Bayram, EA Decker, UG Phutela, et al. (2023) Oxidative stability of emulsions made with self-extracted oil from euryhaline microalgae Spirulina and Scenedesmus. *Algal Res* 75: 103280.
5. MS Petronek, JM Stolwijk, SD Murray, EJ Steinbach, Y Zakharia, et al. (2021) Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy. *Redox Biol* 42: 101864.
6. OM Lai, JJ Jacoby, WF Leong, WT Lai (2019) Chapter 2 - Nutritional Studies of Rice Bran Oil. *Rice Bran and Rice Bran Oil AOCS Press*, p. 19-54.
7. Y Zheng, Dan Fang, Yajun Lv, Bowen Deng, Xiangyu Li, et al. (2024) Current analytical strategies for the determination of phytosterols in vegetable oils. *J Food Compos Anal* 131: 106279.
8. R Sharma, Pankaj K, Bhawana T, Ekjot K, Vivek Kumar G, et al. (2025) Chapter 13 - Plant-derived bioactive phytochemicals as potential compounds for breast cancer prevention and pharmacotherapy: Efficacy, safety, and mechanisms. *Cancer of the Breast Academic Press*, pp. 225-241.
9. RWE Eyango, LL Lienou, MSC Goka, RT Simo, FFD Dongho, et al. (2025) Ethnopharmacological survey of medicinal plants used in the treatment of female infertility in two localities of Melong subdivision-Cameroon. *J Herb Med*, pp. 101042.
10. Uday pal, RK Goswami, S Mehariya, P Verma (2024) Microalgae-derived tocopherols: Biotechnological advances in production and its therapeutic potentials. *Sustain Chem Pharm* 42: 101791.
11. Al Mamun, Mohammad Abu Sufian, Sahab Uddin, Dewan Md Sumsuzzman, Philippe Jeandet, et al. (2022) Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. *Eur J Pharmacol* 928: 174991.
12. LS Assunção, CDF Ribeiro, CO de Souza, R Danielski, S Kumari, et al. (2024) Nanoencapsulation of hybrid crude palm oil Unaué HIE OxG with jackfruit by-products as encapsulants: A study of cellular antioxidant activity and cytotoxicity in Caco-2 cells. *Food Chem* 448: 139009.

13. MT El Saadony, Tao Yang, AM Saad, SS Alkafaas, SS Elkafas, et al. (2024) Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. *Int J Biol Macromol* 277: 134223.
14. K Barathikannan, K Rambabu, M Ihtisham, K Sridhar, JA Mazumder, et al. (2025) Sustainable utilization of date palm byproducts: Bioactive potential and multifunctional applications in food and packaging. *Food Chem* 482: 144216.
15. KO Intarapichet, B Maikhunthod, N Thungmanee (2008) Physicochemical characteristics of pork fed palm oil and conjugated linoleic acid supplements. *Meat Sci* 80(3): 788-794.
16. SL Allred, TR Dhiman, CP Brennand, RC Khanal, DJ McMahon, et al. (2006) Milk and Cheese from Cows Fed Calcium Salts of Palm and Fish Oil Alone or in Combination with Soybean Products. *J Dairy Sci* 89(1): 234-248.
17. MS Hossain, NAN Norulaini, AYA Naim, ARM Zulkhairi, MM Bennama, et al. (2016) Utilization of the supercritical carbon dioxide extraction technology for the production of deoiled palm kernel cake. *J CO2 Util* 16: 121-129.
18. MK Hazreen Nita, ZA Kari, K Mat, ND Rusli, SAM Sukri, et al. (2022) Olive oil by-products in aquafeeds: Opportunities and challenges. *Aquac Reports* 22: 100998.
19. MP Bernal, SG Sommer, D Chadwick, C Qing, L Guoxue, et al. (2017) Chapter Three - Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits. *Academic Press* 144: 143-233.
20. EP Manrique, LM Ledesma, JEV Sánchez, JA Arizala (2018) The effect of sunflower seed oil supplementation on the milk fatty acid contents of cows fed leucaena in an intensive silvopastoral system. *Anim Feed Sci Technol* 239: 55-65.
21. P Gao, Bobo Sun, Zhe Chen, Qiaona Yuan, Wu Zhong, et al. (2024) Effects of different amino acid enzymatic preparations on the quality and flavor of fragrant rapeseed oil. *Food Chem X* 21: 101219.
22. D Fernando, DAI Permatasari, AAMB Hastuti, A Rohman (2025) Authentication of Avocado Oil Mixed with Cooking Oils (Branded and Loose Palm Oil) Utilizing Fourier Transform Infrared Spectroscopy in Conjunction with Chemometrics. *Meas Food* 19: 100241.
23. R Akinoso, AI Lawal, FD Ayegbusi, FO Obadeyi (2025) Effect of repeated heating on palm oil and its fractions, oil stability and the cold storage quality of deep-fried "akara". *Food Humanit* 4: 100591.
24. S Machmudah, Wahyudiono, PRB Gautama, Devi Nur Annisa, RR Rafsanjani, et al. (2025) Enrichment of β -carotene in palm oil through deacidification using supercritical carbon dioxide. *Case Stud Chem Environ Eng* 11: 101191.
25. T Damodaran, NS Yahaya, MN Mordi (2025) Integrative toxicity assessment of tocotrienol-rich fraction from palm oil using in silico methods and zebrafish embryotoxicity model. *Toxicol Vitr* 107: 106062.
26. SP Dassanayake, LS Nawarathna (2025) A machine learning-based approach for predicting the level of palm oil adulteration in coconut oil. *J Food Compos Anal* 137: 106969.
27. M Caldas Abril, K Bauer Estrada, M Gallardo Salas, V Bonilla Bravo, S Pacheco Pappenheim, et al. (2025) Preparation of edible oleogels via encapsulation of high-oleic palm oil using spray drying: Structural characterization and their application as fat substitutes in ice cream. *Food Hydrocoll Heal* 7: 100207.
28. MM Tosif, A Bains, G Goksen, MZ Rehman, N Ali, et al. (2025) Utilizing plant-derived mucilage as palm oil substitute in chocolate cream: A comparative study of Colocasia esculenta, Cordia dichotoma, and Psyllium husk mucilage. *Food Biosci* 63: 105642.
29. R Nyorkeh, E Teye, EK Essuman, SA Haughey, N Logan, et al. (2024) 18 Year analysis of RASFF notifications on Sudan dye adulterated cases in palm oil (2004 to 2022) and the principles of the technique for its detection. *Sustainable Food Technol* 2(5): 1235-1245.
30. SH Adiiba, ES Chan, WZ Ng, CP Song (2025) Exploring combi-lipase catalysis of Eversa® Transform and *Candida rugosa* lipases for enzymatic hydrolysis of crude palm oil: Effects on fatty acid yield and retention of carotene and tocots. *Int J Biol Macromol* 306: 141650.
31. L Zhou, Israq Ali, Bey Hing Goh, Ju Yen Fu, Sivakumar Manicka, et al. (2025) Enhancing meat emulsion gels with soy protein fibril and red palm oil Pickering emulsions: The role of emulsification techniques in chicken fat substitution. *LWT* 216: 117348.
32. NS Sulaiman, MD Sintang, S Mantihal, HM Zaini, E Munsu, et al. (2022) Balancing functional and health benefits of food products formulated with palm oil as oil sources. *Heliyon* 8(10): e11041.
33. F Latib, MAI Zafendi, MA Mohd Lazaldin (2024) The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma. *Food Chem Mol Sci* 9: 100224.
34. S Zio, B Tarnagda, S Sankara, F Tapsoba, C Zongo, et al. (2025) Nutritional and therapeutic interest of most widely produced and consumed plant oils by human: A review. *Appl Food Res* 5(2): 101093.
35. Q Jiang (2024) Different Roles of Tocopherols and Tocotrienols in Chemoprevention and Treatment of Prostate Cancer. *Adv Nutr* 15(7): 100240.
36. JRE Neo, CJ Wang, NCL Chai, EGB Lieo, M Yeo, et al. (2024) Tocotrienol-rich fraction enhances cell proliferation and memory formation in hippocampal HT22 neuronal cells through BDNF/TrkB pathway. *J Funct Foods* 116: 106178.
37. Q Li, S Zhang, Q Zhou, C Gu, Y Liu, et al. (2024) Tocotrienol suppresses colitis-associated cancer progression through TLR4 signaling in a mouse model of colorectal cancer. *Curr Res Toxicol* 7: 100196.
38. MG Sahini, E Mutegoa (2023) Extraction, phytochemistry, nutritional, and therapeutical potentials of rice bran oil: A review. *Phytomedicine Plus* 3(2): 100453.
39. N Askari, SM Mansouri (2024) Fatty acid composition and anti-cancer activity of essential oil from *Tenebrio molitor* larvae in combination with zoledronic acid on prostate cancer. *Heliyon* 10(21): e40012.
40. M Shafras, R Sabaragamuwa, M Suwair (2024) Role of dietary antioxidants in diabetes: An overview. *Food Chem Adv* 4: 100666.
41. KR Ahmed, MM Rahman, MN Islam, MMH Fahim, MA Rahman, et al. (2024) Antioxidants activities of phytochemicals perspective modulation of autophagy and apoptosis to treating cancer. *Biomed Pharmacother* 174: 116497.
42. X Lin, J Wu, Z Li (2025) Vegetable oil intake: The distinctive trilateral relationship of bile acid, gut microbiota and health. *Trends Food Sci Technol* 160: 105001.
43. LP Chan, TW Yen, YP Tseng, T Yuen, M Yuen, et al. (2024) The impact of oral sea-buckthorn oil on skin, blood markers, ocular, and vaginal health: A randomized control trial. *J Funct Foods* 112: 105973.
44. G Dąbrowski, S Czaplicki, M Szustak, E Cichońska, E Gendaszewska Darmach, et al. (2022) Composition of flesh lipids and oleosome yield optimization of selected sea buckthorn (*Hippophae rhamnoides* L.) cultivars grown in Poland. *Food Chem* 369: 130921.
45. K Jia Wei, Ming Fu, AB Asyru Izhar, L Suryaningsih, DT Utama, et al. (2025) The role of plant oils/lipids as innovative fat replacers in various food products: A review. *Appl Food Res* 5(1): 101010.

46. RY Tan, Zul Ilham, SR Ahmad Usuldind, R Ahmade, M Adlim, et al. (2024) Mushroom oils: A review of their production, composition, and potential applications. *Heliyon* 10(11): e31594.

47. B Naik, R Mishra, V Kumar, S Mishra, U Gupta, et al. (2024) Micro-algae: Revolutionizing food production for a healthy and sustainable future. *J Agric Food Res* 15: 100939.

48. Z Qu, S Zhao, Y Zhang, X Wang, L Yan, et al. (2024) Natural Compounds for Bone Remodeling: Targeting osteoblasts and relevant signaling pathways. *Biomed Pharmacother* 180: 117490.

49. S Kaur, K Seemb, A Alic, BK Singha, VK Mishra, et al. (2024) A comprehensive review on nutritional, nutraceutical, and industrial perspectives of perilla (*Perilla frutescens* L.) seeds – An orphan oilseed crop. *Heliyon* 10(12): e33281.

50. FA Moharram, FM Hamed, EK El Sayed, YE Mansouri, MS Mady, et al. (2024) Chemical characterization, neuroprotective effect, and in-silico evaluation of the petroleum ether extract of three palm tree species against glutamate-induced excitotoxicity in rats. *Heliyon* 10(20): e39207.

51. Z Lakhli El Idrissi, Chakir El Guezzane, Ihssan Boujema, Sara El Bernoussi, Aicha Sifou, et al. (2024) Blending cold-pressed peanut oil with omega-3 fatty acids from walnut oil: Analytical profiling and prediction of nutritive attributes and oxidative stability. *Food Chem* X 22: 101453.

52. P Aondoakaa, S Martini, CC Akoh (2025) Physical and chemical properties of low saturated zero trans-fat soft margarine formulated with blends of enzymatically modified soybean oil and mango kernel fat. *Food Chem* 492: 145255.

53. Wang J, Yingying Cheng, Liying Fang, Ao Yang, Feijun Luo, et al. (2024) Physicochemical properties, profile of volatiles, fatty acids, lipids and concomitants from four *Kadsura coccinea* seed oils. *Food Chem* X 23: 101765.

54. MM Adeyanju, Idris A Saheed, Oluwaseun I Oyelekan, Taiwo A Dele Osibajo, Ayodeji A Adelegan, et al. (2022) Sesamum indicum diet prevents hyperlipidemia in experimental rats. *Food Chem Mol Sci* 4: 100092.

55. MM Shehata (2024) Anticancer lipid-based drug delivery systems: Basic knowledge and recent applications. *Nano Trans Med* 3: 100054.

56. S Gargiulo, S Albanese, R Megna, M Gramanzini, G Marsella, et al. (2025) Veterinary medical care in rodent models of stroke: Pitfalls and refinements to balance quality of science and animal welfare. *Neuroscience* 572: 269-302.

57. SR Falsafi, Basheer Aaliya, Ilkem Demirkesen, Tansel Kemerli Kalbaran, Danial Dehnad, et al. (2025) Recent trends in fortifying bread with nutrients: Comprehensive insights into chemical, physical, functional, and nutritional attributes. *Future Foods* 11: 100674.

58. B Kupikowska Stobba, H Niu, I Klojodová, R Agregán, J Manuel, et al. (2025) Controlled lipid digestion in the development of functional and personalized foods for a tailored delivery of dietary fats. *Food Chem* 466: 142151.

59. M Tura, S Tappi, E Valli, PG Salas, R Suleiman, et al. (2025) A selection of African traditional and emerging foods: processing, composition, nutritional, sensory and nutraceutical aspects. *Curr Res Food Sci* 11: 101112.

60. Touhtouh J, Mustapha Laghmari, Fettouma Chraa, Taoufiq Benali, Jamal Ghanam, et al. (2025) *Celtis* genus (Cannabaceae): A comprehensive review of the ethnomedicinal use, food value, phytochemistry, biological activities, valuable compounds, and insight into mechanisms of action. *J Agric Food Res* 21: 101797.

61. Stanisz M, Ł Kłapiszewski, MN Collins, T Jesionowski (2022) Recent progress in biomedical and biotechnological applications of lignin-based spherical nano- and microstructures: a comprehensive review. *Mater Today Chem* 26: 101198.

62. J Mohlamonyane, JO Adeyemi, OA Fawole (2024) Pomegranate fruit peel: A sustainable bioresource in food preservation. *Food Biosci* 62: 105532.

63. G. Liang, ASF Kow, YZ Lee, R Yusof, CL Tham, et al. (2024) Ameliorative effect of α -tocopherol and tocotrienol-rich palm oil extract on meno-pause-associated mood disorder in ovariectomized mice. *Bio chem and Bio phys Res Commun* 734: 150443.

64. Z Zainal, H Khaza'i, A Kutty Radhakrishnan, SK Chang (2022) Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. *Food Res Int* 156: 111175.

65. ML Olivares Tenorio, CM Cortes Prieto, NC Londoño Univio, DA Rojas Díaz, MX Quintanilla Carvajal, et al. (2024) Bioactive compounds in palm oil: A comprehensive review of recent advances in physicochemical characteristics, health-promoting properties and technologies for extraction, concentration, fractionation, encapsulation and functional food applications. *J Food Compos Anal* 132: 106306.

66. SH Adiiba, CP Song, YY Lee, ES Chan (2023) Green process to produce phytonutrients from crude palm oil: Effects of phenolic antioxidants on tocots and carotene retention during enzymatic hydrolysis. *Ind Crops Prod* 202: 116997.

67. A Absalome, CC Massara, AA Alexandre, K Gervais, GG Agnero Chantal, et al. (2020) Biochemical properties, nutritional values, health benefits and sustainability of palm oil. *Biochimie* 178: 81-95.

68. M Younes, G Loubnane, C Sleiman, S Rizk (2024) Tocotrienol isoforms: The molecular mechanisms underlying their effects in cancer therapy and their implementation in clinical trials. *J Integr Med* 22(1): 1-11.

69. TD Alabi, FA Olabiyi, OO Oguntibeju (2020) Chapter 28 - Palm oil: its antioxidant potential in diabetes mellitus. in *Diabetes* (Second Edition), pp. 285-291.

70. F Rey, E Alves, L Gaspar, M Conceição, MR Domingues, et al. (2023) Chapter 10 - Oils as a source of bioactive lipids (olive oil, palm oil, fish oil). *Bioactive Lipids* Academic Press: 231-268.

71. M Ruggiero, MA Panaro, ME la Torre, G Messina, C Porro, et al. (2024) Chapter 78 - Effects of tocopherols and tocotrienols on microglia-mediated neuroprotection. *Natural Molecules in Neuroprotection and Neurotoxicity*, pp. 1839-1856.

72. Azzi A (2019) Tocopherols, tocotrienols and tocomonoenoins: Many similar molecules but only one vitamin E. *Redox Biol* 26: 101259.

73. I Jain, I Singh, SJ Surana, AA Shirkhedkar (2022) Chapter 6 - Tocopherols and tocotrienols: the essential vitamin E. *Bioactive Food Components Activity in Mechanistic Approach*, pp. 139-154.

74. L Trugilho, Livia Alvarenga, Ludmila FMF Cardozo, Maurilo Leite, Denis Fouque, et al. (2024) Vitamin E and conflicting understandings in non-communicable diseases: Is it worth supplementing? *Clin Nutr ESPEN* 59: 343-354.

75. Q Jiang (2022) Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. *Free Radic Biol Med* 179: 375-387.

76. NF Ibrahim, HS Hamezah, D Yanagisawa, M Tsuji, Y Kiuchi, et al. (2021) The effect of α -tocopherol, α - and γ -tocotrienols on amyloid- β aggregation and disaggregation in vitro. *Biochem Biophys Reports* 28: 101131.

77. J da Silva Pinho, BS Moreira, GB Brito, LG de Almeida Torres, D N Eiriz, et al. (2025) Impact of chitosan-based oleogels crosslinked with vanillin containing different oil phases on lipid digestion and bioaccessibility of carotenoids and tocots. *Food Chem* 487: 144740.

78. HA Park, KM Crowe White, L Ciesla, M Scott, S Bannerman, et al. (2022) Al-

pha-tocotrienol enhances arborization of primary hippocampal neurons via upregulation of Bcl-xL. *Nutr Res* 101: 31-42.

79. T Matsura, K Nakaso, Y Horikoshi (2023) Chapter 30 - Tocotrienols and Parkinson's disease: In vitro and in vivo modeling. *Vitamins and Minerals in Neurological Disorders* Academic Press, pp. 513-525.

80. P William Sylvester, V Dronamraju (2020) Chapter 20 - γ -Tocotrienol reversal of the Warburg effect in breast cancer cells is associated with 5'-AMP-activated kinase activation. *Molecular Nutrition* Academic Press, pp. 387-407.

81. KB Magalingam, SD Somanath, Shadab Md, N Haleagrahara, JY Fu, et al. (2022) Tocotrienols protect differentiated SH-SY5Y human neuroblastoma cells against 6-hydroxydopamine-induced cytotoxicity by ameliorating dopamine biosynthesis and dopamine receptor D2 gene expression. *Nutr Res* 98: 27-40.

82. K Radhakrishnan, JS Anandha Rao, S Subramaniam, P Ramdas (2021) Gamma-tocotrienol modifies methylation of HOXA10, IRF4 and ROR α genes in CD4+ T-lymphocytes: Evidence from a syngeneic mouse model of breast cancer. *Curr Res Immunol* 2: 169-174.

ISSN: 2574-1241

DOI: 10.26717/BJSTR.2026.64.010081

Loso Judijanto. *Biomed J Sci & Tech Res*

This work is licensed under Creative Commons Attribution 4.0 License

Submission Link: <https://biomedres.us/submit-manuscript.php>

Assets of Publishing with us

- Global archiving of articles
- Immediate, unrestricted online access
- Rigorous Peer Review Process
- Authors Retain Copyrights
- Unique DOI for all articles

<https://biomedres.us/>