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Introduction
Shape Memory Alloys (SMAs) are a class of advanced functional 

materials capable of recovering their original shape upon heating or 
mechanical unloading after deformation. This unique shape memory 
effect (SME) and super elasticity (SE) arise from reversible solid-state 
phase transformations between the martensitic and austenitic phases 
[1,2]. Among various smart materials, SMAs are particularly attractive 
to the aerospace and defence industries, where demands for light-
weight, adaptive, and multifunctional components are increasing. The 
aerospace sector seeks materials that can reduce system complexity 
while enhancing performance and reliability in harsh environments 
[3]. Similarly, the defence industry values materials that enable adap-
tive structures, self-healing capabilities, and high resilience under 

extreme conditions [4]. This review summarizes SMA fundamentals, 
key material systems, and their aerospace and defence applications, 
emphasizing technological challenges and research trends.

Fundamentals of Shape Memory Alloys
Composition and Types

The most widely used SMAs are Nickel–Titanium (NiTi) alloys, or 
Nitinol, known for their exceptional mechanical strength and repeat-
able transformation behavior [5]. Other systems include Cu-based 
(Cu–Zn–Al, Cu–Al–Ni) and Fe-based SMAs, which are less costly but 
have limited cyclic stability [6] (Figure 1). More recently, high-tem-
perature SMAs (HTSMAs) such as NiTiHf, NiTiPt, and TiPd have been 
developed for aerospace environments exceeding 200°C [7].
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Figure 1: Schematic representation of phase transformation between martensite and austenite in NiTi alloy.

Mechanisms of Action

SMAs exhibit a martensitic phase transformation, a diffusion 
less rearrangement of atoms that changes crystal structure without 
altering chemical composition [1]. Heating or cooling triggers trans-
formation between the high-symmetry austenite and low-symmetry 
martensite phases. This transformation underlies the shape memory 
effect, while stress-induced transformations yield super elasticity [8].

Thermomechanical Properties

Key parameters include transformation temperatures (Ms, Mf, As, 
Af), hysteresis width, and cyclic stability. NiTi SMAs show strain re-
covery up to 8% and excellent damping capacity [9]. Compared with 
traditional aerospace materials (e.g., Ti–6Al–4V), SMAs offer active 
adaptability in addition to mechanical strength.

Aerospace Applications
Actuation Systems

SMAs act as compact actuators replacing bulky hydraulic systems. 
Their silent operation, high power density, and simplicity make them 
ideal for morphing wings, variable geometry inlets, and adaptive con-
trol surfaces [10,11]. NASA’s “SMA-based morphing aircraft” project 
demonstrated NiTi actuators for aerodynamic control [12].

Vibration Damping and Noise Reduction

SMA’s damping capability allows suppression of structural vibra-
tions in aircraft fuselages and engine mounts [13]. Embedding SMA 
wires within composites enhances fatigue resistance and vibration 
control, improving comfort and extending service life [14].

Coupling, Sealing, and Fastening Devices

SMA couplers are used for self-locking joints and fuel-line con-
nectors, maintaining tight seals despite temperature fluctuations 
[15]. They enable remote, maintenance-free operation in spacecraft 
and satellites.

Space Applications

In space systems, SMAs are deployed in antenna mechanisms, 
solar arrays, and deployable booms due to their reliability and lubri-
cation-free actuation [16,17]. They are also used in thermal control 
systems for adaptive temperature regulation.

Defence Applications
Smart Structures and Armor Systems

SMAs contribute to self-healing armor and impact-absorbing 
composites. Integrating SMA wires into protective structures enhanc-
es energy dissipation and post-impact recovery [18].

Adaptive Munitions and Guidance Systems

SMA actuators are integrated into missile guidance fins, adaptive 
triggers, and precision-guided weapons due to their high actuation 
force and small form factor [19,20].

UAVs and Stealth Technology

In unmanned aerial vehicles (UAVs), SMAs enable morphing sur-
faces that optimize aerodynamic efficiency and radar signature [21]. 
Adaptive skins with embedded SMA wires maintain surface smooth-
ness and reduce radar reflectivity [22].

Reliability in Harsh Environments

Military and aerospace systems require high reliability under ex-
treme vibration and temperature. SMAs maintain mechanical perfor-
mance under these conditions, though cyclic fatigue remains a limita-
tion [23].

Challenges and Limitations
Despite their advantages, SMAs face key barriers:

•	 Fatigue and Cyclic Degradation: Microstructural fatigue 
limits long-term reliability [24].
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•	 Slow thermal Response: Thermal actuation can be slower 
than electromagnetic systems [25].

•	 Manufacturing Precision: Alloy composition and process-
ing control are critical for consistent transformation behav-
ior [26].

•	 Control Complexity: SMA actuation is nonlinear and tem-
perature-dependent [27].

•	 Cost and Scalability: NiTi remains costly for large aerospace 
applications [28].

Emerging Trends and Future Prospects
High-Temperature SMAs

New NiTiHf, NiTiPt, and TiPd-based alloys exhibit stable transfor-
mations up to 400°C, making them suitable for jet engines and hyper-
sonic vehicles [7,29].

Hybrid and Composite Systems

Integration of SMAs with fiber-reinforced polymers (FRPs) cre-
ates adaptive materials combining strength, damping, and actuation 
[30].

Integration with Smart Control Systems

Combining SMAs with sensors, microcontrollers, and AI-based 
feedback systems enables intelligent morphing and self-correcting 
structures [31].

Sustainability and Lifecycle Considerations

Efforts toward recyclable SMA alloys and eco-efficient manufac-
turing are ongoing to reduce the environmental footprint of aero-
space and defence systems [32].

Conclusion
Shape Memory Alloys represent a transformative material plat-

form for aerospace and defence innovation. Their combination of 
lightweight actuation, adaptability, and multifunctionality enables 
new design paradigms for morphing structures, vibration control, 
and adaptive mechanisms. However, progress is needed in fatigue life, 
response speed, and cost reduction to achieve full-scale deployment. 
Continued advancements in high-temperature alloys, hybrid com-
posites, and intelligent control integration will position SMAs as key 
enablers of next-generation adaptive aerospace and defence technol-
ogies.
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