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ABSTRACT

A number of innovative concepts in tissue engineering have been evolved over the past few years. The focus has 
been towards repair, sustenance and restoration of the biomechanical functions of the musculoskeletal system. 
Silk fibroins are considered as natural polymers having many merits in their characteristics like acceptable 
level of biocompatibility, very good mechanical strength and have slow rate of degradation. Hence, they merit 
consideration as a suitable scaffolding material in end uses relating to mulculoskeletal tissue engineering. The 
current trends in research have been studied herein during the past few years. A considerable literature review 
has been taken into account and covered. The area of tissue engineering provides an appropriate means for 
repair and replacement of damaged tissues and organs using artificial materials. The objective has been to show 
the status quo of the recent research relating to silk-based scaffolds being used in the musculoskeletal system. 
Also, a comprehensive guideline has been provided for silk biomaterial from bench to bedside. 
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Introduction 
Musculoskeletal tissues, which include bone, cartilage, ligament/

tendon, skeletal muscle, and intervertebral disc, are highly suscep-
tible to injury or damage arising from degenerative changes, exter-
nal force impingement, or sports-related activities. Within the clinic, 
growing concerns over the complications of autografting (e.g., donor 
site morbidity, infection increased surgery time) and allografting (e.g., 
graft rejection, limited quantity) as well as the limited availability and 
efficacy of these tissue repair options have prompted the develop-

ment of various tissue engineering (TE) strategies [1-3]. TE is an in-
terdisciplinary field that combines the principles of engineering and 
biomedical sciences for the development of biological substitutes that 
restore, maintain, or improve tissue function. Through the effective 
integration of biological scaffold materials, cells, and bioactive fac-
tors, the goal of replacing or supporting the function of defective or 
injured body parts is expected to be realized [4]. Silk fibroin (SF), a 
natural protein material that has been clinically used as a suture for 
decades, is now widely lucubrated and utilized in a variety of new 
biomedical applications including TE [5]. 
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Silk fibers possess advantageous properties over most synthetic 
and natural fibers with a unique combination of toughness, biocom-
patibility, biodegradability, low immunogenicity, and thermal stabil-
ity, which may better meet the requirements of musculoskeletal TE 
[6]. Silk from silkworms can be broadly categorized into mulberry 
and non-mulberry silk, depending on the food source of the worm 
[7]. The domesticated mulberry silk worm Bombyxmori is common-
ly cultivated through large-scale sericulture [8]. The non-mulberry 
silkworms, including Antheraeamylitta (A. mylitta), muga silkworm 
Antheraeaassamensis (A. assamensis), oak silkworm Antheraeaper-
nyi (A. pernyi), Philosamiaricini (P. ricini), and Samiacynthia ricini (S. 
cynthia ricini), produce silk that have a particular peptide recognition 
sequence: Arg-Gly-Asp (RGD) [8,9]. This is a cell attachment domain in 
extracellular matrix proteins recognized by integrins, which promote 
cell adhesion of various different cell types. Hence, non-mulberry silk 
biomaterials are superior over mulberry silks in TE applications [10]. 

Silk fibers with a triangular cross section are primarily composed 
of two proteins: The central protein known as silk fibroin is covered 
by a glue-like coating composed of another protein called sericin [11]. 
The earliest use of silk for suture materials was found to have signifi-
cant biocompatibility issues, which provoke immunological reactions 
ranging from delayed hypersensitivity to acute and chronic inflam-
matory processes [12]. However, sericin-free fiber was later found to 
exhibit only a weak immunoreactivity, which greatly increases its ap-
plication potential in the medical field [13,14]. In the past few years, 
SF materials and their derivatives have been the target of intensive 
research in the biomedical field. Silk materials have numerous ad-
vantages in TE applications that are unmatched by other materials, 
including 

(1) Increased biocompatibility suitable for cell adhesion and 
proliferation with less inflammatory responses in vivo; 

(2) Enhanceable and modifiable mechanical properties with 
different silk fibroin solution concentrations and porosities to 
better meet target tissue requirements; 

(3) Nontoxic degradation products and controllable biodegrad-
ability achieved through modification of the β-sheet structure; 

(4) Excellent structural adjustability enabling the fabrication of 
a scaffold with desirable features for specific applications [15]. 

At present, the most widely used biodegradable implantable 
polymer materials include poly (lactic acid) (PLA), polyglycolic acid 
(PGA), and their copolymers, which can basically meet the application 
of scaffold materials in terms of degradability but are not as good as 
silk fibroin materials in terms of biocompatibility and cell adhesion 
[16]. In addition, silk materials also have unique advantages over 
other biopolymer materials. Collagens exhibit a variety of character-

istics making them highly biocompatible and nontoxic, but their poor 
mechanical properties (Young’s modulus: 0.0018–0.046 GPa) make 
them play a minor role in the process of musculoskeletal regenera-
tion [17]. Chitosan exhibits structural similarity to the extracellular 
matrix and has a hydrophilic surface that promotes cell adhesion, 
proliferation, and differentiation [18]. Chitosan alone lacks sufficient 
mechanical strength, which limits its application as a three-dimen-
sional scaffold in musculoskeletal tissue engineering (MTE). Natural 
biopolymers have shown superiority in biomedical applications since 
they have proven to be most compatible with the native extracellu-
lar matrix (ECM). Despite the great compatibility with native ECM, all 
biopolymers were insufficient in delivering the desired performances 
in one or more aspects [19]. Relatively speaking, silk material is more 
balanced in properties and more suitable for MTE. By modifying the 
molecular structure and morphology of silk proteins through the use 
of certain organic solvents for processing or surface modification, we 
can further improve various aspects of the scaffold properties and 
function, thus expanding their applications in drug delivery and TE.

The following aspects have been considered

a) Improved mechanical properties

b) Increased biocompatibility

c) Controllable biocompatibility

d) Excellent structural processability

 Categorization on Morphological Basis
In recent years, many reports have been published on the applica-

tion of silk materials in tissue engineering and drug delivery. Among 
them, the degummed silk fiber is usually reconstructed into differ-
ent morphological types for increasing use in various applications. 
The mechanical properties as well as various primary features of 
silk can be modified through different processing methods. In gen-
eral, varying conditions, such as silk concentration, methanol/salt 
treatment, pore size and porosity, processing temperature, etc., are 
capable of modulating the properties of the silk scaffold. Additionally, 
silk fibroin can also be physically blended or chemically cross-linked 
with various other complementary materials for the reinforcement 
of scaffolds and enhance their mechanical properties. The control of 
different morphological types of scaffolds therefore delivers the con-
trol of their specific characteristics, providing a pathway for the re-
generation application in MTE. To obtain different types of scaffolds, 
degummed silk is dissolved into fresh SF solution, which can be used 
to fabricate into films, knitted scaffold, cords, 3D porous/sponge, hy-
drogels, electrospunfibers, particles, and composite scaffolds (Figure 
1). The different characteristics of various morphological types of silk 
scaffolds are thus individually discussed.
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Figure 1.

The following types have been considered

a) Films [20,21]

b) Knitted scaffold [22]

c) 3D porous or spongs [23]

d) Hydrogel [24]

e) Electrospinning [25]

f) Composite scaffolds [26]

 Areas of applications
a) Silk scaffolds in muscoskeletal tissue engineering [27]

The following aspects have been considered

i) Progress in the Utilization of Silk Scaffolds in Musculoskele-
tal TE over the Years

ii) Classification of Studies

b) Silk scaffolds in bone tissue engineering [28]

The following have been considered

i) Silk source

ii) Morphological Type of Scaffolds

iii) Cells

iv) Animal Models

v) Mechanical Stimuli

vi) Bioactive Factors

c) Silk Scaffolds in Ligament/Tendon Tissue Engineering [29]

The following have been considered 

i) Silk Source

ii) Morphological Type of Scaffolds

iii) Cells

iv) Animal Models

v) Mechanical Stimuli

vi) Biological Factors

d) Silk Scaffolds in Cartilage Tissue Engineering [30]

The following aspects have been considered

i) Silk Source

ii) Morphological Type of Scaffolds

iii) Cells

iv) Animal Models

v) Mechanical Stimuli

vi) Biological Factors

e) Silk Scaffolds in Osteochondral Tissue Engineering [31]

f) Silk Scaffolds in Skeletal Muscle Tissue Engineering [32]

g) Silk Scaffolds in IVD Tissue Engineering [33]
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Future Perspectives
The following aspects have been considered [34]

a) Controllable Parameters in Musculoskeletal Tissue Engi-
neering

b) Limitations of Silk Scaffolds in Clinical Applications

c) How to Promote the Clinical Applications of Silk Scaffold

Conclusion
 The human health can get adversely affected by damage caused 

to musculoskeletal tissues, comprising bone, cartilage, tendon, liga-
ment, and skeletal muscles. The repair and replacement of damaged 
tissues using synthetic material can be made possible by means of 
tissue engineering. The demerits and issues associated with con-
ventional surgical techniques have strongly prompted the evolution 
and progress of tissue engineering. The objective has been to show 
the present position of research on silk-based scaffolds to be used 
in the musculoskeletal system over the past few years. The effective 
use of silk scaffolds in the musculoskeletal system shows the worth 
of silk fibroin in tissue engineering, thereby offering strong evidence 
to enable the design of silk scaffolds having better performance and 
integrated designs. Also, a comprehensive guide is offered for silk bio-
materials from bench to bedside herein, enabling a feasible route for 
researchers inclined to proceed further for clinical conversion of their 
research studies.
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