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ABSTRACT

The novel model of Prognosis Intelligence-PI, inspired by the Portfolio Intelligence, Loukeris et al. (2015) is 
provided for medical support. The PI elaborates advanced diagnosis data on the health reassurance problem, 
supported by robust Artificial Intelligence systems. The Prognosis Intelligence – PI model extracts hidden 
patterns from extended amounts of health indices eg blood pressure, temperature, blood composition, etc 
filtering the noise or ill-diagnosed conditions to provide an optimal health treatment portfolio selection system. 
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Introduction
The axioms of choice by von Neumann-Morgenstern axioms sup-

posing normal distributions of measurements returns and quadratic 
preferences influence a majority of portfolio selection models, in-
spired by the (Markowitz’s, [1]) mean-variance criterion. Although 
the practitioners conclude on the weak existence of these conditions, 
(Merton, [2]), as the behavior of individuals in terms of utility and 
pleasure, are not Normally Independently and Ideally Distributed in 
non quadratic distribution. Loukeris et al. (3) noticed the marginal 
superiority of the Power utility than the Quadratic function, using 
skewness, in addition. In terms of pleasure individuals prefer positive 
skewness, on high gains by extreme positive events, (Boyle, [4]), in 
low kurtosis on lower risk in extreme pain on both sides of the dis-
tribution, The aim of this paper is to evaluate the first phase of the 
optimization problem, in a generic resolution of the second step. Then 
I build the integrated model of Prognosis Intelligence to optimize 
health portfolio solutions with Artificial Intelligence advanced tech-
niques. This PI model is created under my evaluation of six different 
Jordan Elman hybrid models. The scope is quintuple:

i)	 To examine individuals’ health indices in higher moments of 
utility distribution, in terms of pain and gain, 

ii)	 To support the isoelastic utility as an optimal function on 
individual’s utility, 

iii)	 To advance the fundamentals health indices examination, 
filtering the noise, and define healthy patterns of utility 

iv)	 To evaluate the Jordan Elmans networks in neuro-genetic 
hybrids or neural net forms on various topologies to a new learn-
ing process, compared to past results of Radial Basis Functions, 
Support Vector Machines, Time-Lag Recurrent Nets, MLPs and the 
Bayesian Regression, defining the optimal health solution. 

v)	 To provide the PI model in health portfolio selection and op-
timization problems supported by innovative modelses. 

The Jordan Elmans, are evaluated in 11 topologies of 2 neural and 
4 hybrids where genetic algorithms optimize their parameters. These 
learning process, of Batch, updates the trained weights ex-ante, faster. 
The health portfolio optimization problem is non-deterministic, thus 
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heuristics can support it optimally. 66 models of Jordan Elman de-
termined optimal classifier of PI model. The complicated and unique 
human profile cannot be accurately described, but I model it in the 
Isoelastic utility and AI. Section 1 provides a description of the EMH, 
the higher moments and the Isoelastic utility I use. Section 2 offers 
the portfolio selection model of the Isoelastic utility function, the new 
portfolio selection constraints with fundamentals and Artificial Intel-
ligence models. The Section 3 supports the data analysis. Section 4 
includes the results and Section 5 the conclusions.

Higher Moments 
The health indices distributions are not n.i.i.d. in reality, as vari-

ous non-linear parameters affect the health overall. (Subrahmanyam, 
[5]), noticed that individuals are more sensitive to their potential 
pain, I to model the overall utility preferences, including sub-con-
scious trends. Individuals distribute their utility between ideas and 
fears, and pleasure. They expects a rational level of happiness, but the 
fear of pain alters their decisions. Most of individuals are risk averse 
or risk neutral, thus the fear manipulates them. In normal conditions 
the fear of losing the health, as in epidemic, or pandemic the fear of 
maximizing pain produces irrational herding behaviors. The further 
higher moments of health indices detect the hidden aspects of indi-
viduals’ decision making. (Loukeris, et al. [6,7]) noticed that on the 
implied utility function of the HARA family (Hyperbolic Absolute Risk 
Aversion) the 5th of hyperskewness and the 6th of hyperkyrtosis mo-
ments should be used.

The Prognosis Intelligence – PI Model
Inspired by the Portfolio Intelligence, (Loukeris, et al [8]), the 

Prognosis Intelligence - PI model on the first step reads the funda-
mental health indices and the preferred optimization period t. Then 
it proceeds by selecting the initial method to evaluate the health mea-

sures/indices in the portfolio. On this step the individual’s risk profile 
is given and the λ is selected for the Isoelastic utility. On the next step, 
the system examines if this is the last individual to be examined, and if 
the condition for the optimal health portfolio as an efficient portfolio 
is satisfied. Else I proceed to the next step of the initial evaluation that 
uses an AI system, to create two subsets: Subset A of the healthy indi-
viduals, and Subset B of the distressed/patients. In the specific model 
I select the best network among the RBFs, the SVMs and the MLP the 
Jordan Elman Neural Net of 1 hidden layer that converges in 4 sec-
onds only. The ετ value is calculated (0, for the healthy and 1 for the 
distressed individuals). If ετ = 1 then the individual is distressed and 
it is restricted, else if ετ = 0 is healthy being candidate for the optimal 
efficient health portfolio set. On the next step the Ut(Rt(i)) the utility 
function of is calculated per individual. Next, individuals are ranked 
according to their utility score. Then, the Efficient Frontier is calculat-
ed. Next, the individuals with the higher utility score are selected into 
the efficient health portfolio. The sub-optimal individuals as well as 
the non-optimal individuals are revaluated with potential new data 
on the step 4 of Neural Nets evaluation, following all the steps. Next, 
after the efficient health portfolio is created, its Utility Function is cal-
culated UPj(f). 

Then, the optimal overall portfolio U*Pj(f) whose utility is the 
maximum available, is detected, if possible, by all the available effi-
cient portfolios utilities UPj(f) recorded in U*Pj(f)> UPj(f). The mod-
el’s flow chart is in (Figure 1). The process stops when the time limit 
is reached and the PI has the optimal health portfolio, and its charac-
teristics are guidelines for the individuals to increase their utility. The 
key idea is to filter noise on the health diagnosis and disorient doc-
tors. Thus examining recent indices I can define the real health levels 
of the individual. After the real healthy individuals are selected then 
their gains are considered on the model and I proceed on the creation 
of the excellent health portfolio
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Figure 1: The PI model.
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The Genetic Algorithms in the Neural Hybrids
The significance on each one of the 16 inputs in all the Radial Ba-

sis Functions, Jordan Elman, Multi Layer Perceptrons is evaluated in 
Genetic Algorithms, as well, in multiple training process. Detect the 
inputs combination that produces the lowest error. The Genetic Al-
gorithms are elaborated in four different hybrid models of different 
topologies:

i)	 On the inputs layer only, 

ii)	 On the inputs and outputs layers only, 

iii)	 Into all the layers, 

iv)	 Into all the layers with cross validation, 

The Batch learning was preferred to update the weights of hybrid 
neuro-genetic JE, after the presentation of the entire training set. The 
Genetic Algorithms also resolved the problem of optimal values in all 
the hidden layers and the output in:

a)	 The Step Size and 

b)	 The Momentum Rate. 

The JE nets require multiple training to achieve the lowest error. 

Data 
Data were produced by 1411 cases and a 17th index with initial 

classification, done by executives. Test set was 50% of overall data, 
and training set 50%. The key idea is to define and select the optimal 
network in terms of accuracy, efficiency and impartiality regardless of 
the similar processing time of the trained networks

The Classifiers
Support Vector Machines

The Support Vector Machines-SVM, make general regression, and 
classification functions from a set of labeled training data, binary and 
input is categorical. The training of SVMs is short in a sequential mini-
mal optimization, the output is unmarked of slow learning on extend-
ed multi-classes data ses, minimum computations of the high dimen-
sional space, processing directly the input The optimisation problem 
of the Adatron learning algorithm to the RBFN, substitutes the inner 
product of patterns in the input space by a kernel function:
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in choice of αi as a common starting multiplier, t small threshold, 
and h low learning rate. The converging system produces a few αi ≠0, 
the support vectors, interacting with the closest boundary samples 
among classes. The Adatron kernel adjusts the RBFN in an optimal 
margin, and prunes the RBF net.

Radial Basis Functions

The Radial Basis Function-RBF nets do linear regressions, classifi-
cations and time series predictions in supervised learning. The train-
ing set, or set of examples, contains the independent (input) variable, 
sensitive to noise, and the dependent (output) variable. The Linear 
models are: 

 ( ) ( ),m
j jF x w h x= Σ  (2)

where f(x) a linear combination on m set of fixed functions, the 
Basis Functions, wj linear combinations coefficients and hj weights. 
A Radial Basis Function-RBF network is in figure 2, every input com-
ponent (p) is on a hidden nodes layer, each node is a p multivariate 
Gaussian function (RBF): 

 ( ) 2 2, exp{ 1/ 2 } ( )i i k ikG x x x xσ = − Σ −   (3)

of mean xi and variance, the linear weight on the hidden nodes, 
produces the output that may create a very large hidden layer: 

  ( ) [ ( , )]N
i iF x w G x x= Σ  (4)

The significance of each health indices out of the 16 inputs in hy-
brid RBF network is unknown to the model hence Genetic Algorithms 
select them. Each model is trained multiple times to define the inputs 
combination of the lowest error. Genetic Algorithms were implement-
ed in different hybrid models: 

i)	 On the inputs layer only,

ii)	 On the inputs and outputs layers only, 

iii)	 Into all the layers and cluster centers,

iv)	 Into all the layers and cluster centers with cross validation, 

in different topologies. Batch learning was selected to update the 
weights of hybrid neuro-genetic RBF, after the presentation of the en-
tire training set. The competitive rule was the Conscience Full func-
tion in Euclidean metric as the conscience mechanism keeps a count 
on how often a PE wins the competition, and enforces a constant win-
ing rate across the neurons. There were 4 neurons per hidden layer, 
using the Tanh Axon transfer function, on the Momentum learning 
rule. Genetic Algorithms resolved the problem of optimal values in

a)	 Processing Elements, 

b)	 Step Size and

c)	 Momentum Rate, and

d)	 Cluster Centers. RBF nets require multiple training to obtain 
the lowest error. The output layer elaborated Genetic Algorithms 
in some hybrids optimising the Step size and the Momentum. 
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Conclusions
In terms of the overall performance, (Loukeris, et al. [8,9]), the 

Hybrid RBF on GA optimisation into inputs and outputs only with 3 
hidden layers had the overall optimal performance where 97.24% 
and 72.48% of the companies converged in classification as healthy 
and distressed respectively, the fitness of the model to the data was 
high at r 0.925 whilst errors remained low at MSE 0.116, NMSE at 
0.393, in error 9.039% on a moderate Akaike criterion, in a short 
computing time of 5 hours 48 minutes 56 seconds. The second place 
was given to the Hybrid RBF of GAs in all layers of no hidden layers 
where 98.15% of healthy and 60.09% of distressed companies were 
correctly classified, in a fine fitness to the data at 0.815 in medium 
MSE, NMSE, proportional errors, medium AIC signifying statistical 
non-impartiality, in a quick processing time of 5 hours 2 minutes 28 
seconds (Tables 1-3). The third rank is given to the SVM of 500 epochs 

that although excelled in classification and performance, the extreme-
ly high partiality bias it incorporates consists a serious point of dis-
cussion. The integrated PI model is fully flexible as I provide the user 
with the opportunity to select whether the health of the individuals 
is performed once, and to choose the type of the model (neural net, 
hybrid net, models with cross validation), or twice by an initial neural 
net and then by a hybrid net of CV in a double precision process. The 
reason I provide these alternatives is that given that the neural net op-
erates as a black box with unique results each time, I try to avoid mis-
judgment due to the non-linear complexity of the models and over-fit-
ting, in case of Cross Validation absence. In case of a single precision 
with a hybrid that includes Cross Validation the models is secured by 
the risk of overfitting, but exposed to the risk of non-repeatable ob-
jectivity. Thus in cases of double precision models the user is ensured 
that the financial health is found accurately, and objectively [10-92]. 

Table 1: RBFs Overall Optimal Results, Loukeris, Eleftheriadis & Livanis (2014).
Hybrid Networks Active Confusion Matrix Performance Time

Layers 0→0 0→1 1→0 1→1 MSE NMSE R %error AIC MDL

RBF input-output GA 3 97.24 2.76 27.52 72.48 0.166 0.393 0.9256 9.039 672.93 1912.74 5h48’56’’

RBF GA 0 98.15 1.85 39.91 60.09 0.188 0.445 0.8158 13.009 37.12 820.831 5h02’28’’

RBF inputs GA 0 97.73 2.26 46.32 53.67 0.219 0.519 0.7916 12.383 282.78 1154.02 4h19’42’’

Table 2: Overall Optimal Results on SVMs, RBFs MLPs, Loukeris and Eleftheriadis (2012a), Loukeris et al. (2013), Loukeris et al. (2014a).
Neural Network Active Confusion Matrix Performance Time

Layers 0→0 0→1 1→0 1→1 MSE NMSE  r %error AIC MDL

SVM 500 epochs 100 0 0 100 0.035 0.072 0.999 5.4367 23073.68 39305.4 1’ 52’’

SVM 1000 epochs 100 0 0 100 0.035 0.066 0.999 4.8573 23016.76 39248.5 4’ 11’’

Hybrid SVM 500 epochs GA input 100 0 0 100 0.045 0.086 0.999 6.5558 16159.80 27896.0 14h 39’ 31’’

Hybrid SVM 500 epochs GA output 100 0 0 100 0.065 0.125 0.999 6.8050 23457.92 39689.6 1h 07’ 34’’

Hybrid SVM 1000 epochs GA output 100 0 0 100 0.049 0.095 0.999 6.2354 23253.32 39485.0 4h 23’ 35’’

Hybrid SVM 500 epochs GA in, C. V. 100 0 0 100 0.023 0.045 0.999 4.0133 12044.20 21524.3 26h 56’ 14’’

94.29 5.69 22.01 77.98 0.309 0.591 0.949 12.728 13931.09 23409.9

Hybrid SVM 1000 epoc. GA out., CV 100 0 0 100 0.098 0.505 0.999 6.1344 23292.73 39540.5 5h 38’ 12’

94.63 5.36 24.31 75.68 0.522 0.679 0.971 1.7162 24663.75 40911.5

Hybrid SVM 500 epoc. GA All, CV 100 0 0 100 0.091 0.175 0.999 9.0672 12375.85 21401.5 21h 16’ 32’’

95.88 4.10 25.22 74.76 0.541 1.037 0.983 25,126 13646.24 22672.4

RBF input-output GA 3 97.24 2.76 27.52 72.48 0.166 0.393 0.925 9.039 672.93 1912.74 5h48’56’’

RBF GA All 0 98.15 1.85 39.91 60.09 0.188 0.445 0.815 13.00 37.12 820.831 5h02’28’’

RBF inputs GA 0 97.73 2.26 46.32 53.67 0.219 0.519 0.791 12.383 282.78 1154.02 4h19’42’’

MLP N. N. 1 100 0 98.62 1.37 0.418 0.989 0.107 19.432 -468.25 -374.8 15’’
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Table 3: Overall Optimal Results on SVMs, RBFs MLP.
Neural Network  Active Confusion Matrix Performance  Time

Layers 0→0 0→1 1→0 1→1 MSE NMSE r %error AIC MDL

RBF input-output GA 3 97.24 2.76 27.52 72.48 0.166 0.393 0.925 9.039 672.93 1912.74 5h 48’56’’

 RBF GA All 0 98.15 1.85 39.91 60.09 0.188 0.445 0.815 13.00 37.12 820.83 5h 02’28’’

SVM 500 epochs 100 0 0 100 0.035 0.072 0.999 5.436 23073.68 39305.4 1’ 52’’

SVM 1000 epochs 100 0 0 100 0.035 0.066 0.999 4.857 23016.76 39248.5 4’ 11’’

Conclusions and Future Research 
The integrated model PI - Portfolio Intelligence, offers a more 

detailed approach into the real time portfolio selection problem. The 
main advantage of this system is that by extracting hidden patterns it 
tries to avoid manipulation, and speculation games. The Radial Basis 
Function networks have a promising performance of high calibration 
that can allow them to be a part of this model or its future develop-
ments. More over the Hybrid Radial Basis Function on GA optimisa-
tion into inputs and outputs only with 3 hidden layers had the overall 
optimal performance as a reliable model of good classification abili-
ties, performance and a low computing time, but in a higher risk of 
overfitting, whilst the Hybrid RBF of GAs in all layers of no hidden 
layers in a marginal lower rank is the best option in all aspects plus 
it protects from overtraining. The Support Vector Machines had the 
overall excellent classification and performance but they are exposed 
to partiality feature, and thus are not appropriate for numeric classi-
fication problems. Thus the Radial Basis Function networks provide a 
good non-linear regression to Portfolio Selection.
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