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ABSTRACT

In this paper, a hybrid signal processing approach integrating Discrete Wavelet Transform (DWT) and classification 
by algorithm-based Support Vector Machine (SVM) were used to detect and classify different types of skin cancer 
from eleven adult patients in a variety of locations on the body. To this aim, a specific optical probe was applied 
to acquire diffuse light reflectance intensity from the tissue over the visible and near- infrared spectral range 
(400 - 1000 nm). After outlier detection and removal and Kaiser- Bessel filtering as a preprocessing step on 
the reflectance intensity spectrum (raw data), DWT analysis with DB4 mother wavelet was used to decompose 
the raw signal data into 5-levels: D1-D4 and A4 coefficients, representing the optical signal sub-bands. Then, 
ten features were considered for evaluation, including entropy, kurtosis, skewness, mean, standard deviation, 
and more. These features were calculated on each DWT coefficient to find the differences in tissue states. After 
feature extraction and selection, 12 eigenvalues were evaluated as the input of the SVM classifier for classification 
of normal tissue and different cancer subtypes. Other classifiers including k-nearest neighbor, random forest, 
and naïve bayesian were also tested and compared. Two different classification algorithms following the above 
steps have been developed and are describe in this work. Our studies focused on adult patients (ages: 50-90 
years old) with diagnoses of malignant melanoma (MM, n=4), basal cell carcinoma (BCC, n=5) and squamous 
cell carcinoma (SCC, n=2). Measurements were taken first in vivo before surgery, at the site of the lesion and 
from healthy skin of the same patient, and ex vivo after surgical excision. The results obtained by this work 
show that both algorithms achieve high performance with more than 95% accuracy. Furthermore, an average 
area under the curve of 0.99 and a false negative rate of less than 5% are achieved. These results demonstrate 
the efficacy of the hybrid framework suggested here and support its potential as a suitable automated platform 
to distinguish between healthy and cancerous skin tissue and to differentiate between cancer types. This could 
support medical workers, improve the detection rate of cancerous skin lesions, and increase the efficiency of 
suspicious lesion assessment.
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Introduction
Skin cancer is an anomalous development of skin cells in the epi-

dermis and is the most common form of cancer. It is categorized into 
two main groups according to their cell origin: namely melanoma 
(MM) and non-melanoma (BCC: basal cell carcinoma and SCC: squa-
mous cell carcinoma) [1-3]. MM is the most aggressive and danger-
ous type of common skin cancer due its high capacity to metastasize 
and is lethal if not promptly diagnosed and treated [4]. BCCs are ma-
lignant lesions with low metastasis risk while SCCs can both local-
ly invade, metastasize, and cause death in a subset of patients [5,6]. 
These types require special attention due to their ability to rapidly 
grow and possibly result in major disfiguration or even death. Still, 
they are the most common of all human cancers and a growing health 
problem worldwide. Over time, many platforms have been suggested 
for skin cancer detection and diagnosis; each of which possess unique 
strengths and weaknesses [7-11]. With some of these platforms: 

1) The diagnoses are prone to false-positive, or even worse, 
false-negative results, 

2) Suffer from low penetration depth, 

3) Are ineffective at separation between cancer subtypes, 

4) Possess a small field of view, 

5) Are expensive, 

6) Require long screening time, etc. 

These drawbacks limit the effectiveness of those techniques as di-
agnostic tools in the early stage of cancer development. Overcoming 
these shortcomings, multiple alternative approaches have been sug-
gested that apply a variety of types of hardware together with compu-
tational algorithms including artificial intelligence [12-16]. Still, there 
is an unmet need reliable technique to diagnose skin cancer earlier.

Thanks to the rapid advances in optical technology over decades, 
its applications in medicine for diagnosis, therapy, and surgery-guid-
ance and specifically for cancer have continually increased and are 
widely discussed in the literature [17-23]. Among others, optical fiber 
probe-based diffuse reflectance spectroscopy has been suggested as 
a tool for early cancer diagnosis via real-time skin cancer monitoring 
[24-27]. This kind of optical method is considered a popular diagnos-
tic platform due to its ease of operation, high spatial and temporal 
resolution, relative low cost, noninvasive nature, and lack of risk asso-
ciated with ionizing radiation. Diffuse reflectance spectroscopy (DRS) 
depends on the inherent optical properties of tissue (absorption and 
scattering) and, as such, does not require a contrast agent. Tissue ab-
sorption is a function of molecular composition (hemoglobin, mela-
nin, fat, water, and more) while scattering is related to the structure 
and number of organelles in the cell that have a refractive index dif-
ferent from the surrounding medium [28-30]. 

In the process of tumor development, as the composition and 
structure of the tissue changes, light absorption and scattering char-
acteristics also change correspondingly and ultimately affect the re-
flectance spectrum and its statistical spectral features. In general, the 
spectrum reflects the chemical, biological, and physical state of the 
substance and is therefore used in a variety of biomedical applica-
tions. Here, in particular, we utilized a DRS configuration based on 
a single fiber-optic probe composed of seven small fibers: six opti-
cal fibers illuminate the tissue, and a single fiber collects diffuse light 
emitted from the tissue [31-32]. The six illumination fibers are placed 
around the central collection fiber in a circular manner. We hypothe-
sized that this configuration, in conjunction with the advanced signal 
processing algorithm and machine learning, could be applied to dis-
tinguish between normal and cancer tissue. Furthermore, it could dif-
ferentiate between cancer types, and serve as a quick, objective, non-
invasive screening tool for suspicious skin lesions. Beyond the optical 
setup is the data processing, where the retrieved bio-optical signals 
can be analyzed with machine or deep learning approaches to save 
time and assist health care professionals in the diagnosis task. The 
use of machine learning algorithms for skin cancer diagnosis is widely 
studied with a range of detection strategies from simple algorithms to 
deep learning-based approaches [33-38]. 

Furthermore, various models are used for classification tasks in-
cluding decision trees (DT), random forest (RF), naïve Bayes (NB), 
support vector machine (SVM), k-nearest neighbors (KNN), multi-
layer perceptrons (MLP), hidden Markov model (HMM), autoencoder 
(AE), and more. A review of the different methods used in skin cancer 
classification can be found in Ref. [39]. Here, we chose SVM as the 
classifier, as they have previously been proven to be very effective. 
SVM is a supervised learning method that establishes a generalized 
linear classifier for binary classifications. In general, SVM objective is 
to find the optimal hyperplane that accurately separates data points 
belonging to different classes [40-42]. Inspired by the success of the 
above platforms in different arena, we hypothesize in this study that 
the use of sophisticated data processing alongside bio- optical meth-
ods can improve physician diagnostic accuracy and guide treatment 
decisions. One of the main challenges in detection of skin cancer sub-
types from spectra signals is the detection of the disease with high 
accuracy in the early stages.

In this paper, with the aim of achieving high accuracy, a hybrid 
approach wherein a ‘six-around-one’ optical probe combined with 
discrete wavelet transform decomposition, ten significant features to 
classify spectra signals, and a machine learning algorithm is imple-
mented for classification of skin cancer samples of 11 adult patients 
over a wide variety of ages with MM, BCC and SCC on different loca-
tions over the body. Before the surgical resection of the cutaneous le-
sions was conducted, the probe was placed close to the skin area and 
the reflected light was acquired in the spectral range of 400 to 1000 
nm. Then, the probe was placed on a different site on the same pa-
tient where the tissue is normal, and measurements were taken again. 
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The patient was then taken to an operating room for local surgery 
to remove the lesion for histological analysis. During processing, the 
acquired reflected signal was filtered and outliers were removed as a 
preprocessing step. Then, discrete wavelet transform (DWT) analy-
sis with a DB4 mother wavelet type was used to decompose the raw 
signal data into 5-levels (bands). Other kind of mother wavelets were 
investigated but DB4 was found to give the most accurate results. Ten 
features were included in the evaluation, including entropy, kurtosis, 
skewness, mean, standard deviation, and more, were extracted man-
ually on each decomposed signal. 

After feature extraction and selection, 12 eigenvalues were eval-
uated as the input of the SVM classifier for classification of normal 
tissue and different cancer subtypes. To apply the proposed ap-

proach, Matlab software was used for data processing of suspected 
skin lesions. Figure 1 shows the overall architecture of the proposed 
technique and steps involved in the classification of optical signal. To 
increase classification accuracy between cancer types, two different 
strategies of data analysis were suggested and will be demonstrated 
(Figures 2 & 3). In general, the accuracy of the classification proce-
dure examines its ability to differentiate cancer from healthy tissue. 
The results achieved in this study are very promising and show the 
efficacy of our method to effectively differentiate between cancer 
subtypes. It should be stress out that although the optical setup and 
participants are similar to our previous work, 43 the data processing, 
results and their presentation are completely differing which makes 
this current research differ in contrast to [43].

Note: Zuntz, et al.
Figure 1: Overall block diagram of the proposed methodology for skin cancer screening and classification.
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Note: Zuntz, et al.
Figure 2: Flowchart of the first approach of classification - SVM was applied in a two- classes classification separating health and cancer tissue and 
then applied in three-classes classification separating between cancer 

Note: Zuntz, et al.
Figure 3: Flowchart of the second approach of classification - after cancer detection SVM was applied in 2-class classification separating MM and 
the other two cancer types (BCC and SCC). SVM was then applied in a 2-class classification separating BCC and SCC.
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The rest of the manuscript is organized as below. Following the 
introduction in Section 1, the experimental protocol, optical setup, 
and explains the signal decomposition, feature extraction, and classi-
fication used in this work is elaborated in Section 2. In Section 3, the 
results of the proposed method and the interpretation of the results 
are displayed. Finally, Section 4 summarizes the paper.

Materials and Methods
Participants

A total of eleven adult patients (male and female, ages 40-90 
years old) with observed skin lesions were included in this study. 
Of the 11 patients, 4 patients were diagnosed with MM, 5 with BCC, 
and 2 with SCC. Samples included skin excisions from the face, scalp, 
neck, leg, forehead, chest, and back. Informed consent was obtained 
from all participants and clinical information was collected. Suspect-
ed lesions were identified by a clinician and their diagnoses were 
confirmed through histological analysis following a biopsy. Prior to 
surgery, the spectral reflectance of tumor tissue and adjacent normal 
healthy tissue was acquired and processed off-line. Following surgery, 
the lesion was rinsed and sent to the pathology laboratory unit in the 
hospital for analysis according to the standard pathology workflow 
for tissue processing and histopathological analyses. Pathological re-
sults were obtained following 3 - 7 days. This work was carried out 
in accordance with all ethical guidelines, approved by the internal 
review board (Helsinki committee) at Rabin Medical Center (study 
number 0494-21-RMC).

Experimental Setup

Figure 4 presents a schematic illustration of the setup used in 
this study. As shown, the system consisted of a wideband light source 
(Thorlabs, SLS201L), a single fiber-optic probe (Ocean Optics, R200-
7), a USB fiber-optic spectrometer (AvaSpec- ULS4096CL-EVO, Avant-
es), and a computer (Lenovo G570). During the experiments, the 
probe was held gently and closely perpendicular to the middle of the 
tumor. The probe was not in contact with the tissue being tested (5 
mm distance) to avoid the need for cleaning and disinfection of the 
probe. Representative close-up photographic images of the lesion on 
the human body prior to excision are presented in Figures 5a. The 
spectrometer operates in the spectral range from 200 to 1100 nm 
with a spectral resolution of 0.05 nm and is connected to the comput-
er. The probe, which guides the light from the light source toward the 
tissue, contains six illumination fibers arranged around the central 
single collection fiber, which transmits the reflected light emanating 
from the tissue back to the spectrometer [44]. Each set of data ac-
quisition involved the measurement of one hundred replicate spectra 
(acquired over 13 s) at one position which were co-added to a single 
average spectrum and used for further analysis. Measurements were 
taken at the site of the lesion and from healthy skin of the same pa-
tient. An example of diffuse reflectance intensity spectrum obtained 
from a representative BCC case as compared to healthy tissue is shown 
in Figure 5b. The entire setup was controlled by Matlab software (The 
Mathorks Inc., MA, USA) which was also used for data processing.

Note: Zuntz, et al.
Figure 4: Schematic diagram of the optical system utilizing a bifurcated fiber containing six irradiation fibers around one collection fiber.
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Note: Zuntz, et al.
Figure 5:
(a) Photograph of skin lesion on the human body prior to excision.
(b) An example of a diffuse reflectance intensity spectrum obtained from a BCC case in comparison with healthy tissue. Each graph is the 
average of hundred replicate spectra acquired by the spectrometer.

Processing Framework

A schematic diagram of the framework is depicted in Figure 1. 
The first stage consists of a preprocessing chain including detect-
ing and removing outliers and signal filtering to compensate for the 
effect of environmental conditions and for the system response. In 
order to prevent errors and uncertainties in the acquired measure-
ment, spectral outliers were identified by the following criterion of: 

  1.96( )raw i avgI Iλ σ≥ ± ×  where ( )raw iI λ represents the reflectance 
intensity at the specific wavelength, iλ , avgI  is the average of neigh-
boring intensity around iλ , and σ the standard deviation of the mean; 
if identified as an outlier, the intensity at the specific wavelength was 

removed from the spectra. An example of the detection of six outliers 
at the wavelength 605 nm is demonstrated in Figure 6a. A variety of 
FIR filters such as Rectangular, Hann, Hamming, and Kaiser window 
techniques were tested for noise reduction (denoising) following out-
lier elimination [45]. After comparing and analyzing the performance 
of each filter, the Kaiser window order 64 with β=0.5 was found to 
give the best results. A sample spectrum of cancer (BCC case) and 
healthy tissue before and after Kaiser filtering method is presented in 
Figures 6b & 6c, respectively. After the data was denoised, the wave-
let transforms method was used to decompose the signal into differ-
ent components and wavelet coefficients were obtained with a base 
wavelet function depending on the scale and shift value. 
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Note: Zuntz, et al.
Figure 6:
(a) Example of the detection of six outliers at 605 nm.
(b) Spectrum profile of cancer and normal tissue before and
(c) After Kaiser filtering.
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Discreate wavelet transform (DWT) is one type of wavelet analy-
sis that is used here for decomposition. Generally, DWT is performed 
by repeated filtering of the input signal with a pair of low and high 
pass filters. The coefficients corresponding to the low pass filter are 
called approximation and similarly, high pass filtered coefficients are 
called detailed. Furthermore, the approximation coefficient is con-
sequently divided into new approximation and detailed coefficients. 
This decomposition process is carried out until the required frequen-
cy response is achieved from the given input signal [46,47]. After 
many experiments, it was finally determined that our signal is decom-
posed into five levels of wavelet by using Daubechies wavelet function 
(DB4); the resulting five coefficients of DWT were used to represent 
the optical signal sub-band as shown by the example in Figure 2. After 
decomposition, a set of ten common statistical metrics of different or-
ders and non-statistical features were calculated to assess the optical 
signal corresponding to each sub-band to find the difference in cancer 
states. The features include the standard deviation, mean, variance, 
median, max, min, shannon entropy, skewness, kurtosis, and power 
spectrum density. Ten features were extracted for each of the five sub-
band signals and therefore a total of 50 features were obtained and 
served as input to the classifier. The classifier directs the classification 

of a new observation to a particular category. 

In search of the best classifier for the proposed data, five clas-
sifiers namely random forest, naïve bayes, support vector machine, 
k-nearest neighbors, and decision trees were tested. In this work, 
three types of SVM with Gaussian / Quadratic / Cubic as the kernel 
function were utilized to improve classification results further. SVM is 
the most common classifier used in science and engineering, as it uti-
lizes non-linear transformation to make an appropriate decision. It is 
a supervised learning method that aims to find an optimal separating 
hyperplane with the maximum margin to separate two classes in the 
feature space [48]. The vectors that define the hyperplane are called 
the support vectors. In the first approach of classification, SVM was 
applied in 2-class classification separating the healthy control from 
the cancer tissue and then applied in 3-class classification separat-
ing between cancer subtypes as described in Figure 6. In the second 
approach, after cancer detection SVM was applied in 2-class classifi-
cation separating MM and the other two cancer types (BCC and SCC). 
Then, SVM was applied again in 2-class classification separating BCC 
and SCC as shown by the block diagram in Figure 7. The performance 
of these two approaches will be presented in the results section.

Note: Zuntz, et al.
Figure 7: Example of five decomposition coefficients of DWT representing the optical signal sub-band for healthy and cancer (BCC case, Figure 
2b) tissue.
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Performance Evaluation Metrics

We evaluated the performance of the classification using four 
commonly used parameters for a binary classification task including 
the area under the curve (AUC), accuracy, sensitivity, and specificity. 
AUC measures the classifier’s ability and is employed as a ROC curve 
summary. These quantities are defined in the following equations by 
four classification values [49,50] 

TP TNAccuracy
TP FP FN TN

+
=

+ + +  (1)

TPSensitivity
TP FN

=
+  (2)

TNSpecificity
FP TN

=
+  (3)

2
Sensitivity SpecificityAUC +

=  (4)

TN = True Negative, TP = True Positive, FP = False Positive, FN 
= False Negative. TP represents the number of diseased cancers ac-
tually predicted by the classifier as diseased and FP represents the 
number of diseased predicted as healthy. TN is defined as a healthy 
sample predicted healthy, and FP is the number of mistakenly predict-
ed healthy as diseased. The matrix based on the classification results 
is shown in Table 1. The data was divided into calibration (training) 
and validation (testing) for the performance evaluation of the clas-
sifiers using the k-fold Cross Validation (CV) approach. In the k-fold 
CV, the data set is split into k folds which k-1 folds is used for training 
and one-fold for validation. This procedure is performed for all parts 
of the data, yielding the results of each fold. The classifier’s overall 
performance is then assessed by averaging all of the folds. In this 
study, the performances of the classifiers were evaluated using 5-fold 
CV. Selection of appropriate feature plays an important role in signal 
processing. Before classifying the signal, the extracted feature must 
be selected accordingly to provide the best result, because selection 
of the wrong features may give poor results even when applying the 
best classifier.

Table 1: Global precision evaluation of the two approaches.
Classifier Type Observations Accuracy Predicted Correctly Predicted Falsely

First Approach 3 Classes 871 96.9% 844 27

Second Approach
MM-Others 871 95% 827 44

SCC-BCC 420 100% 420 0

Results and Discussion
The study was carried out in two different ways in terms of fea-

ture selection and classification approach as shown in Figures 2 & 
3. Common to these approaches is the way the dataset was split. As 
mentioned in subsections 2.1 and 2.2, we have eleven subjects and 
one hundred samples were acquired from each subject, resulting in 
total of one thousand hundred samples. This is not the ideal situation 
given the small number of patients (n =11), but it does give some indi-
cation of the viability of our approach. During experiments, this data 
set (n =1100) is split as 80% for training data and 20% as testing data 

(validation), randomly. The confusion matrix, which measures the 
degree of deviation between the labeled experimental outcomes and 
true ones, of the classification results of the first approach using the 
Kurtosis of D2 and D4 DWT coefficients as feature vectors and classi-
fication scatter map with a quadratic SVM classifier are shown in Fig-
ures 8a & 8b, respectively. Specifically, the scatter plot of the classifier 
includes a marking for the top 50 support vectors to help visualize the 
decision surface that classifies the observations in the hyperplanes. 
The confusion matrix is a result of using k-fold cross-validation men-
tioned in sub-section 2.4. Performance results of accuracy, TP, and FN 
parameters in classifying cancer subtypes are given in Figure 8c. 
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Note: Zuntz, et al.
Figure 8:
(a) Confusion matrix of the first classification approach using the Kurtosis of D2 and D4 DWT coefficients. The matrix is a result of using k-fold 
cross-validation mentioned in sub-section 2.4.
(b) Classification scatter map with a quadratic SVM classifier. The scatter plot includes a marking for the top 50 support vectors to help 
visualize the decision surface that classifies the observations in the hyperplanes.
(c) Performance results of accuracy, TP, and FN parameters in classifying cancer subtypes
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The recognition accuracies of BCC, MM, and SCC are 96.7%, 96.5%, 
and 97.9%, respectively with overall low FN rate of less than 3.5%. 
The confusion matrices indicate that our approach achieved higher 
scores on true positives indicating high sensitivity, which is crucial 
in the field of medicine, especially when the diagnosis is automated. 
For further illustration and clarification of results, receiver operating 
characteristic (ROC) curves based on SVM quadratic kernel are de-
picted in Figure 9. The larger the TPR, the higher the diagnostic accu-
racy; The smaller the FPR, the lower the misjudgment rate. The value 

of ROC ranges from 0.5 to 1, in which 0.5 indicates the worst classifier 
and 1 indicates the most robust classifier. Area under curve (AUC) is 
given; the higher the AUC value the better the model’s performance at 
distinguishing between classes. As depicted, the proposed approach 
is closer to the point in the upper left corner of the ROC space, indi-
cating that its diagnostic performance is better. It can be seen that the 
proposed method performed well in the classification of all types, and 
specifically of SCC with AUC = 0.9976.

Note: Zuntz, et al.
Figure 9: ROC curve obtained from classification obtained by the first approach.

In a second approach considered in this study (Figure 7), the 
resultant confusion matrix using the average of Shannon of D4 and 
the minimum of Shannon D4 coefficients as feature vectors and clas-
sification scatter map are shown in Figures 10a & 10b, respectively. 
Performance results of accuracy, TP, and FN parameters in classifying 
cancer subtypes are given in Figure 10c. The recognition accuracies 
of MM, and others (BCC and SCC) reached about 94.8% and 95.1%, 
respectively, with a low FN rate of less than 5.2%. Following final 
classification for the others, 100% accuracy rates were achieved with 
maximum TPR as presented in Figure 11. As the figure shows, indeed 
performance accuracy for MM is about the same here as with the first 

approach, with the current approach accuracy for BCC and SCC in-
crease up to 100% showing that all the BCC / SCC types were detected 
correctly. The attained ROC curve based on SVM quadratic kernel is 
depicted in Figure 12. After obtaining the above results, a comparison 
of the performance of both classification approaches were conducted 
using six different classifiers (Fine Tree, Wide Neural Network, Fine 
KNN, Ensemble-Bagged Trees, SVM - Quadratic Kernel, and Naive 
Bayes); results are shown in Tables 2 & 3 for both approaches, re-
spectively. Based on the results shown in the tables, the highest accu-
racy is achieved with Ensemble-Bagged Trees (EBT) classifier with an 
average accuracy of 98%. 
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Note: Zuntz, et al.
Figure 10: Same as in Fig. 8 but for the second classification approach. Here, the average of Shannon average and min of D2 and D4 coefficients, 
respectively as feature vectors is used. Others → BCC and SCC.
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Note: zuntz, et al.
Figure 11: Continuation with Figure 8, second classification approach between SCC to BCC. Here, the average of Shannon average of D1 and 
Kurtosis of D3 coefficients, respectively as feature vectors is used.
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Note: Zuntz, et al.
Figure 12: Comparison of ROC performance obtained from classification by the second approach between MM to others (BCC and SCC) using 
(a) SVM and Ensemble - Bagged tree.
(b) ROC curve between BCC and
(c) SCC using Quadratic SVM classifier.

Table 2: Performance comparison of the two processing approaches. Others meant BCC & SCC.

Classifier Class TPR FNR PPV FDR Sensitivity Specificity

First Approach 3 Classes

MM 96.50% 3.50% 98.10% 1.90% 98.06% 96.55%

SSC 97.90% 2.10% 95.80% 4.20% 95.88 97.85%

BCC 96.70% 3.30% 95.80% 4.20% 95.83% 96.6%
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Second Ap-
proach

MM-Others
MM 94.80% 5.20% 94.80% 5.20% 94.8% 94.8%

Others 95.10% 4.90% 95.10% 4.90% 95.1% 95.1%

SCC-BCC
SCC 100% 0% 100% 0% 100% 100%

BCC 100% 0% 100% 0% 100% 100%

Table 3: The results of different classifiers for cancer detection using the first approach.

Classifier Class TP FN FP TN
Accuracy 
per class 

(%)

Accura-
cy Per 

Classifi-
er (%)

Sensi-
tivity 
Per 

Classi-
fier (%)

Sensitiv-
ity Per 

Classifier 
(%)

Specific-
ty Per 
Class 
(%)

Specific-
ty Per 

Classifier 
(%)

Precision 
Per Clas-
sifier (%)

Precision 
Per Classi-

fier (%)

Fine Tree

BCC 199 15 7 650 97.5

97.2

93.0

95.4

98.9

97.7

96.6

96.1MM 413 11 21 426 96.3 97.4 95.3 95.2

SCC 223 10 8 630 97.9 95.7 98.7 96.5

Wide 
Neural 

Network

BCC 205 9 9 648 97.9

97.3

95.8

95.8

58.6

97.8

95.8

96.0
MM 410 14 17 430 96.4 96.7 96.2 96.0

SCC 221 12 9 629 97.6 94.8 98.6 96.1

Fine KNN

BCC 189 25 87 648 91.1

90.0

88.3

86.1

91.9

92.4

76.8

84.0

MM 339 85 43 404 85.3 80.0 90.4 88.7

SCC 210 23 33 605 93.6 90.1 94.8 86.4

Ensemble 
Bagged 
Trees

BCC 206 8 6 651 98.4

98.3

96.3

97.3

99.1

98.6

97.2

97.5

MM 415 9 11 436 97.7 97.9 97.5 97.4

SCC 228 5 5 633 98.9 97.9 99.7 97.9

Svm – 
Quadratic 

Kernel

BCC

205

9 12 645
97.6

97.9

95.8

96.9

98.2

98.4

94.5

96.5
MM

410
14 8 439 97.5 96.7 98.2 98.1

SCC
229

4 7 631 98.7 98.3 98.9 97.0

Naive 
Bayes

BCC
199

15 16 641 96.4

92.3

93

87.4

97.6

93.3

92.6

89.4MM
392

32 65 382 88.9 92.5 85.5 85.8

SCC 179 54 20 618 91.5 76.8 96.9 89.9

In both approaches, the Fine KNN has the lowest performance 
measure of any comparison method. For further illustration and com-
pleteness of presentations, ROC graphs for the different classification 
classifiers are shown in Figures 13a & 13b for the first and second 
approach, respectively. Finally, ROC performance for the BCC and SCC 

in the second approach is shown in Figure 13c. With the results pre-
sented above it can be concluded that our approach can be used to 
detect and classify different types of skin cancer with high accuracy 
and overall may be adapted to the detection of a variety of other c.
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Note: Zuntz, et al.
Figure 13: 
(a) ROC curves obtained from different classifiers for the first and
(b) Second approaches
(c) ROC curve of BCC and SCC following the second approach.
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Summary
This study presented a hybrid pipeline methodology combining 

discrete wavelet transform and machine learning from broad wave-
length range (VIS-NIR) diffuse light reflectance spectra for the dis-
crimination of cancerous from healthy tissue and classification of can-
cer subtypes. Two different strategies of data analysis were suggested 
and compared based on ROC performance through a series of six dif-
ferent classifier techniques. During this research, multiple extracted 
features were used to increase the screening between skin cancer 
subtypes: SCC, BCC and MM. After decomposition, a set of ten statis-
tical moments and non-statistical features were used to help distin-
guish cancer states. We demonstrate our approach on cancerous le-
sions obtained from eleven patients over different parts of the body 
as compared to healthy skin tissue on each patient. Six different ML 
methods were carried out, and these models were trained and tested 
using a 1100 data set. The performance of the proposed algorithm 
has been validated by measuring various parameters including sensi-
tivity, accuracy, and more. According to our results, we demonstrate 
that the EBT (ensemble bagged tree) method achieved the highest 
classification accuracy of at least 98%, with an AUC of 0.99, compared 
to other classifiers thus underscoring the validity and feasibility of 
the proposed method for the identification of skin cancer.

Overall, this study yielded excellent results in differentiating nor-
mal and cancer tissues in human experiments which has the potential 
to improve both patient survival and outcome. We believe that our 
approach can be used as an efficient scheme to assist clinicians for au-
tomatic, real-time human skin cancer detection and classification and 
will inspire further development improving classification and accu-
racy. Along the same line, we plan to implement this approach during 
hyperspectral imaging procedures of tissue examination which might 
be beneficial for the skin cancer diagnosis and disease types.17, [51-
53] One main limitation of this study is the small number of patients 
and therefore a study with a larger patient sample should be carried 
out in the future to allow verification and reproducibility of the re-
ported results. To the best of the author’s knowledge, we are the first 
group to suggest such a skin cancer detection method.
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