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ABSTRACT

The Markov chains from which the Markov models of biological macromolecules originate are ana`oytically 
studied. The aspects of modifications of the Markov chain after numerical approximation are analytically 
formulated; the comparison between Markovian objects is induced after the individuation of criteria of strong 
stability and of ergodicity: unassociatedly, the confrontation of Markovian objects and non-Markovian objects 
is achieved between the framework of the definition of geometrical ergodicity. The perturbation approach 
is considered: the decays of the correlation functions allow for the Sinai Markov partitions to be set, which 
constitute the playground on which the Landau–Lifshitz–Gilbert equation is implemented for the construction 
of the density operator after the collapse of the wavefunction. The applications are scrutinised to the Markov 
analysis of the Langevin equation for the analytical description of soft matter.
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Introduction
The description of biomaterials in terms of probabilistic interpre-

tation of the phenomenological evidence from the experiential data 
from biological macro- molecules is presented; in particular, the Mar-
kov models are chosen according to their memory-less-ness- proper-
ties matched in the data analysis. The long-time-scale dynamics of the 
biological macromolecules is analysed as ’memory-less’; the time evo-
lution of stochastic biochemical systems is interpreted according to 
the qualities of the reactants. After the modelisation of the output of 
the experimental data of an experiment, i.e. one modellising a particu-
lar Markov model, the collapse of the wavefunction is interpreted as a 
measurement postulate. The dynamics of biological macromolecules 
happens to be fitted after the prescription of the Markov schemes; 
the time evolution of the macromolecules is exploited according to 
(computer-based) numerical approximations. The influence of the 
numerical approximations of the features of the Markov models are 
analysed in the present work according to the qualities of the Markov 
chains originating the several Markov Models, which are interpret-
ed within the experimental data: it is understood that numerical ap-

proximations might induce modifications in the originating Markov 
chain, where the modifications can be Markovian or non-Markovian. 
For these reasons, the qualities of the Markov chains whose descend-
ing Markov Models are individuated in the biochemical materials are 
summarised, and the criteria according to which the perturbed chains 
are compared with the analytical expressions of the theoretical ones 
are set.

The Markov approximations are analysed according to their be-
haviour after the exact time evolution of the density operator; the 
correspondence with the von Neumann conditions, and the hypoth-
esis that the solutions coincide with the exact density operator are 
expressed: as far as the obtention of the wished expression of the den-
sity operator is concerned, the notion of ’open quantum system’ and 
that of ’heat bath’ are compared. The von-Neumann equation and the 
Bloch equation can be juxtaposed: the collapse of the wavefunction is 
therefore understood as deriving from the Lan- Dau–Lifshitz–Gilbert 
equation, where the latter can be reconducted to a ’non- linear vari-
ant of the von Neumann equation’. The purpose is formulated, that 
the multiple-pathways techniques be applied to the analysis of ’soft 
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matter’. To these aims, the Markov chains are presented according 
their technical capability to comprehend the requested tasks. More in 
details, the features of the Markov chains are analysed, such as ergo-
dicity, strong stability and geometrical ergodicity, for the sake of the 
Sinai Markov partitions to be applied.

The paper is organised as follows.

•	 In Section 2, the argumentation for the study of the long-time-
scale dynamics of biological macromolecules is introduced.

•	 In Section 3, the focus on the thoeretical understanding of sto-
chastic biochemical systems is motivated.

•	 In Section 4, the qualities of the dynamics of biological macro-
molecules which can be theoretised according to the Markov 
models are evidentiated.

•	 In Section 4.1, the perturbations of ergodic Markov chains are 
presented as the schemes according to which the phenomeno-
logical evidence is compared with the theoretical framework; in 
particular, the expansions of perturbation series are explained.

•	 In Section 5, the perturbations of ergodic Markov chains are 
studied; associatedly, the notions of strong stability and of ergo-
dicity are reviewed for Markov chains admitting partition with 
the ’zero’ state, to introduce the criteria for the comparison of 
Markov chains admitting the same phase space, which are need-
ed for the application of the Sinai Markov partitions.

•	 In Section 6, geometrically-ergodic Markov chains are comple-
mented with the analysis of the possible non-Markovian mod-
ifications of the Markov chains, which can be due to numerical 
approximation.

•	 In Section 7, particular clustering algorithms which are used for 
the definition of some Hidden Markov Models are recalled; as a 
consequence, the behaviour of the wavefunction can be induced.

•	 In Section 8, after the stochastic Markov model, both statistical 
reconstructions and predictions with respect to the unknowns of 
the equations are accomplished.

•	 In Section 9, perturbation theory on ergodic Markov chains is 
performed as far as the aspects of numerical approximations are 
concerned.

•	 In Section 10, the ’Markovian-noise’ bath is proposed as a tool 
of the present investigation; the analysis is aimed at confronting 
the decay properties of the correlation function, after which the 
Sinai Markov partitions can be used.

•	 In Section 11, the Markov approximation of quantum theory of 
dissipative processes is taken into account for the construction 
of the density matrix.

•	 In Section 12, the relations between the von Neumann equations 
and the Lan- Dau–Lifshitz–Gilbert equation are examined.

•	 In Section 13, the coarsegrainig methods and the techniques to 
be applied for the analytical descirption of soft matter are select-
ed. 

Long-Time-Scale Dynamics of Biological Macro- Molecules

In [1], the memory-less time-evolution equation is postulated as

( ) ˆdX X t K
dt

=
 (1)

being X the probability of the nth state to be occupied at the time t, 
and { }ˆ ijK k≡  the (constant) transition-rate matrix: the kij entry corre-
sponds to the transition from i to j. 

The ’conservation of mass’ laws are expressed as

i=j
ii ijk k≡ ∑   (2)

Given the time steps τ, the transition probability matrix (TPM) 
{ }ˆ ijP p≡  is constructed as with the entries pij corresponding to the 

transition for i to j. The propagation of the Markov chain is expressed 
as iterates of the probability matrix.

About Stochastic Biochemical Systems

In [2], the ’chemical equations of motions’ can be calculated.

From the rate equations, the transformation is looked for, which 
allows one to approximate from the ’continuous domain’ chemical 
equations of motion to a ’discrete domain of molecular states, with 
the definitions of the corresponding probabilities and of the appro-
priate times description. Let qw be the number of all possible combi-
nations of reactant: the molecules are associated with the m-th reac-
tion channel when the system is at a state x,

i.e. q(m)(x) is defined as

q(m)(x) = xi, monomolecular reactions; (3a)

q(m)(x) = xi (xi − 1)/2, biomolecular reactions with identical re-
actants; (3b)

q(m)(x) = xixj, biomolecular reactions with different reactants, 
(3c)

with i ≥ 1, j ≤ N, i /= j.

Let cm be the probability per unit time for a reaction at the m-the 
channel, with cm > 0.

The probability , ,m tP t t dt 
  +  is written as

( ) ( ), ,m t m mP t t dt m x dt c q xπ 
  + = = (4)

The mean first passage time < t >fp is defined as the average time 
when a particle reaches the final state for the first time; in particular,
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 (5)

for the rate k. This way,

1f
ktp e−= − (6)

About the Dynamics of Biological Macromolecules

As an example, from [1], the conformational changes of proteins 
are studied, within the frameworks of protein folding, ligand binding, 
signal transduction, allostery and enzymatic catalysis.

For a state X, the transition matrix defines the distribution veloc-
ity

( )X t  after the time nτ (7)

with the definition of the iterate of the operator p̂  as

( ) ( ) ( )ˆ0
n

X n X pτ τ=    (8)

Perturbation Theory of Finite Markov Chains: Markov chains 
which comprehend one irreducible set of states (sub chain) are stud-
ied in [3]. The approach here followed is to impose the variation of 
the probability matrix. Stationary distributions and fundamental ma-
trices are hypothesised to vary if the probability matrix is perturbed. 
The method here followed is based on the definition of the fundamen-
tal matrix from the given perturbed probability matrix.

Let A be an N -state stationary Markov chain. Let 
{ }ij

A Ap p≡
 

be the probability matrix.

Definition a

The ’time-averaged’ probability PA∞ matrix is defined as

............... ( )lim
A A m

A

m

p pp
m

∞

→∞

+ +
=  (9)

From [4], A always exists.

From [5], its fundamental matrix QA always exists.

The fundamental matrix QA is written as the fundamental matrix 
QA is written as

( )1
AA AQ P P ∞= − + (10)

Under the hypothesis that A contains only one irreducible set of 
states (i.e. one subchain), the following Theorem holds:

•	 Theorem 1

Let Aπ  be the stationary distribution of A, with A A
ij ijP π∞ = . 

Then, Aπ  is the

unique solution of 

0A a APπ π (11)

Let B be an N -state stationary Markov chain. Let PB be its tran-
sition matrix. Let PB be ’close’ to PA (in the meaning which will be 
specified in the following). πB is expected to be close to Aπ .

The sub chains of the chains are now hypothsised not to overlap. 
Let ABU  be the differential matrix such that

.[ ]AB B A AU P P Q= − (12)

The matrix ABH  is looked for, such that
B A ABHπ π=  (13)

with Bπ  normalised as a probability distribution.

The aim of the following theorem is to obtain πB and the funda-
mental matrix

QB from πA, QA, UAB.

It is necessary to remark that there exists the matrix HAB such 
that

1( )AB ABH I U −≡ − ,(14)

i.e.

( ) 1
( )AB A A B BH Q I P P Q

− ∞ ∞= − +  (15)

such that

( )1 .A AB BI P H− = (16)

 If A contains only one subchain, and if B contains only one sub-
chain, the following theorem holds: Theorem 2

The statements are given: after
B A ABHπ π= ,(17)

the probability matrix of B is written as

B A ABP P H∞ ∞= ,(18)

and the fundamental matrix of B is worked out as
B A AB A AB AB A ABQ Q H P H U Q H∞= − (19)

The following statement is taken from the proof of Theorem 2:

Statement:

Let β be defined as
B AP Pβ = − ; (20)

then
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2 2( ) ( ) ( )B A A B A A A B AP P Q O P Q Oπ π π β π β= + − + = +
. (21)

The Expression of the Perturbation Series: From [3], under the 
hypothesis that PB be sufficiently close to PA, the ’close- ness’ is here 
expressed as

|| || 1/ || ||B A AP P Q− < (22)

for the opportune measure (to be defined [6]); the expansion of 
the matrix (1-U)-1 in series of U holds.

Eq. (17), Eq. (18) and Eq. (19) become

1

n
B A A n

n
Uπ π π

=∞

=

= +∑
,(23)

1

n
B A

n
n

P P C∞ ∞
=∞

=

= +∑ ,(24)

with Cn as
A nC n P U∞− ≡ ,(25)

 and

1
n

n
B Q

n
Q A D

=∞

=

= +∑
 (26)

With Dn 

1

k n
A n A k A n k

n
k

D Q U P U Q U
=

∞ −

=

≡ −∑ (27)

respectively.

1.1.1. Some Qualities of Markov Chains with Generic Phase 
Space: Further investigations about perturbations of Markov chains 
are from [7], where the linear mappings of the Kernels are made use 
of: within the context of a generic phase space, the criteria for the 
strong stability and the fundamental operator are introduced. The ex-
istence and the bounded-ness of a ’fundamental operator’ T allows 
one to recover items of information in the cases of comparison of dif-
ferent objects. Given a strong stable Markov chain, every stochastic 
kernel Z  on the neigh- bourhood of the transition kernel P  obeys 
the relation

Tρ ρδ += + ,(28)

with

|| || || ||  || |||| ||Tρ ρ δ+ − ≤ (29)

 with

¯ ¯Z Pδ = −  (30)

where ρ is defined in the following theorem.

•	 Theorem 3

Given X a Markov chain strongly stable with respect to the norm 
|| · ||, for Y¯ a stochastic kernel in the neighbourhood of P¯, such that

1|| || (|| T ) ||δ −<  (31)

Y¯ admits a unique stationary measure ρ such that

1

1
( ) T( )T

i
i

i
Iρ δ δ+ +

∞

=

−
=

= =− ∑
(32)

The measure ρ admits therefore the equality

|| |||| ||
|| |

1
|

|| ||
T

T
ρ δ

ρ
δ

+− =
−  .(33)

Perturbations of Ergodic Markov Chains

From [8], the following definition of a ’generalised potential oper-
ator’ is reviewed. For a Markov chain X, the Korolyuk-Turbin partitions 
are assumed (which admit the ’zero’ state), and the Korolyuk-Turbin 
stationary projector Π¯ is taken. Let P¯ denote the transition kernel 
(and its corresponding linear operator). Let B be the Banach space.

•	 Theorem 4 

A ’generalised potential operator’ R is well-defined on the sub-
space B0 = B (I − P¯+Π¯). A potential operator is a linear isomorphism 
between the space B0(I −Π¯) and the space B (I − Π¯) such that

0 0( ) ( ) { }   0B R B RΠ = Π = .(34)

Definition b

Let Π¯ be the stationary projector of the kernel P¯, Π¯ ∈ B.

The measure µ ∈ B acquires the value µ = νR of a generalised po-
tential R of the chain X, if µ is a solution of the system

 ,   0( ) ( )µ I P I µPiν− = −Π = .(35)

From [9], the following definitions are taken.

Definition c

A Markov chains is uniformly ergodic in the norm || · || if

|| ¯ ¯ ( ) || 0tlim P t→∞ −Π → (36)

Definition d

A Markov chain is strongly stable in the norm || · || if, to small per-
turbations (with respect to the induced operator norm) of the kernel 
P¯ there correspond small || · || perturbations of the invariant mea-
sure of the originating chain. Given two Markov chains with common 
phase space, it is possible to establish the criteria for comparisons: 
these procedures are useful in the comparisons of a Markov chain and 
its perturbed version; more in detail, in the case the perturbation of 
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the Markov chain produces an object which is still Markovian. The 
following useful theorems are issued from [10]. Let B be a Banach 
space with norm || · ||. Let X(t) be with values in a measurable Markov 
chain. Let P¯ (x, A) be the transition kernel with x ∈ E, and A ∈ G; mG 
is the space of infinite measures in G. There exists and is unique the 
invariant probability matrix π¯.

•	 Theorem 5

X is ’uniformly ergodic’ with respect to the norm || · || if the op-
erator Oˆ as

||ˆ :|| O I P B mG≡ − +Π → (37)

has ’bounded inverse’, that is
1 || ( ) || I P −− +Π < ∞ .(38)

Furthermore,

  || ||Π < ∞ .(39)

•	 Theorem 6

X is uniformly ergodic if is it ’strongly stable’ in this norm.

Perturbation of Geometrically-Ergodic Markov Chains

In [11], the computer-based numerical simulations of the Markov 
chains are critically analysed; in particular, perturbations are stud-
ied to be ascribed to finite precision and finite range, ’pseudo-ran-
dom-ness’ instead of random-ness, and algorithms that involve (nu-
merical) approximations: the present scrutiny is based on the latter 
instance. Be R a measurable separable space endowed with metric, 
and be P (x, ·) a family of transition probabilities of a Markov chain. 
Let the function h be denominated a ’round-off function’; the function 
h(x) is hypothesised to be ’close’ to x ∀x ∈ R.

The operator P (x, ·) the transition operator of the ’rounded-off’ 
chain.

The operator ),(P x A is defined as
1,( ( ),)P x A P x h A−≡ ;(40)

this way, the first iteration corresponds to the original chain: 
nevertheless, the successive iterations do not. Actually, P˜ cannot be 
considered a perturbation of P, as there does not exist any natural op-
erator norm apt for this definition. The analysis of the perturbation is 
therefore developed after different tools. More in detail, the Markov 
Kernel K is defined as

( ) ( ) ( ) ( ) ( ), , , xP x dy x y K x dy I y r xα= + ,(41) 

where α is the ’acceptance probability’ (i.e. for the system to move 
from x to y), and r is such that P must be stochastic. The ’total varia-
tion perturbations’ affect the numerical simulations. Given P a geo-
metrically ergodic, let π¯ be the stationary distribution. There exists 
a finite function V, and there exist the finite positive numbers γ and 

b such that the ’geometrical drift condition’ is implemented after ∆V 
(x) defined as

, ) ) (   ( ( )CV x V x bI x x Rγ∆ ≤ − + ∈ ,(42)

such that

( ) ( ) ( ) ( ) ( ) ( ),V x PV x V x V y P x dy V x∆ = − = − (43)

A particular Hidden Markov Model

From [12], discrete first-order HidMM can be considered. The 
probabilistic model describes a stochastic sequence O as 

1 2  ,  ,  ...,  TO O O O= (44)

as the indirect observation of an underlying (hidden) sequence 
Q as

1 2, ,..., TQ Q Q Q= (45)

i.e. where the hidden process is Markovian. It is possible that the 
process is observed as not being Markovian. From [13], the qualities 
of the Hidden Markov Model (HidMM) can be quantified. Let M be the 
number of distinct observations symbols per state; the observation 
symbols correspond to the physical output of the modelled system: 
individual symbols are denoted as Vi as

1 2, ,...i nV V V V= (46)

i.e. such that, at the time t,

1 2, ,. .{ }.t nO V V V∈ .(47)

The collapse of the wavefunction has to be taken as a measure-
ment postulate.

Proper Stochastic Markov Models

From [14], the stochastic Markov model is made use of two to 
achieve both statistical reconstructions and predictions with respect 
to the unknowns of the equations. The hypothesis is taken, that only 
one measurable state is available for the time series: therefore, an al-
gorithm is proposed in order to both tailor any orders and write the 
transition matrix of the chain. The time series enables the probability 
density function and the conditional- probability density function to 
be constructed. The required estimators are the maximum likelihood 
function and the conditional expectation value. This way, it is possible 
to reconstruct from chaotic data.

Perturbative Theory of Ergodic Markov Chains: Numerical 
Approximations

From [15], it is learnt that perturbation to Markov chains implies 
perturbations to Markov processes. When the unperturbed chain is 
geometrically ergodic, the perturbations studied are uniform in the 
weak sense on bounded time intervals. The long-time behaviour of 
the perturbation chain must be investigated. Geometric ergodici-
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ty implies the exponential convergence of expectations of functions 
’from a certain class’ (which will be clarified in the below). The per-
turbations of the chains which are due to the numerical approxima-
tions are studied. 

Nearly-Gaussian Markovian-Noise Bath

From [16], to study the role of a nearly-Gaussian Markovian noise 
bath it is necessary to investigate on how a test system interacts with 
a heat bath, where the latter has a proper frequency spectrum which 
produces a Gaussian Markovian random perturbation. The elimina-
tion of the bath is this way performed. The relationship with the sto-
chastic approach and the mechanical one has to be further explored. 
For this purpose, it is possible to envisage a partial destruction of 
quantum coherence of a system interacting with its environment. 
Quantum processes in dissipative systems can therefore be studied. 
The stochastic approach is here summarized. Let A be a test system; 
and let B be a bath, denoted as Ω = (Ω1, Ω2, ...): B is taken to have a 
stochastic evolution described after a Markovian equation.

Be P (t, Ω) the probability to find B in the state Ωat the time t; the 
transition rate between Ω and Ω′ is denoted as (Ω | Γ | Ω′): the equilib-
rium state of Γ is | 0), i.e. such that

| ) ( |0 0, 0 0; 0 0 1( | )Γ = Γ = = .(48)

The evolution of the bath is given as

γ ∂ ∂
Γ Ω+

∂Ω
= −

∂ΩΩ .(49)

 The equilibrium distribution of Ω is P0 as

( )0 0 0( | )P =Ω Ω ,(50)

which obeys the condition

( )0 0PΓ =Ω Ω .(51)

The correlation function of the noise is as

( ) ( )( )0 tt e γ−=Ω Ω ,(52)

from which the correlation time τc is defined as

1
cτ γ
=

.(53)

The decay of correlation functions in Markov processes was in-
vestigated in [17]; after this control, the Sinai Markov partitions [18] 
can be applied as far as the formulation of the analysis of the proper-
ties of soft matter is concerned.

Markov Approximation of Quantum Theory of Dissipative 
Processes

In [19], the Markov approximation is investigated to be improved 
after the ex- act time evolution of the density operator, the obeyance 
to the von Neumann conditions, and the request that the solutions 

should coincide with the exact density operator in the limit to a Mar-
kov process. The notion of ’open quantum system’ can be compared 
with that of a heat bath: the density operator is obtained in a manner 
such that it obeys a time-evolution equation under the hypothesis 
that the generator be independent of time and that the von Neumann 
conditions be fulfilled. The hypothesis of the exponential decay of the 
correlation function is taken. The Bloch equations and the density 
matrix can then be written in a way such that the von Neumann con-
ditions be respected.

The Nakajima-Zwanzig Equation: The von Neumann conditions 
are respected at both shot time scales and longtime scale sin the Na-
kajima-Zwanzig equation when the first-Born approximations are 
made. The wished weak-coupling limit is obtained for the time evolu-
tion. After the decay of the correlation functions, the density operator 
becomes Markovian.

From the Von Neumann Equation to the Bloch Equation

The space-independent von Neumann equation can be derived 
from the Bloch equation, as in [20]. As an example, the analytical ex-
pression of the density matrix in the quantum- mechanical formalism 
can be recovered from a pure state of electron spin. When the Bloch 
equation is extended, the collapse of the wave-function is taken after 
the induction factor in the Landau–Lifshitz–Gilbert equation, where 
the latter can be reverted to a ’nonlinear variant of the von Neumann 
equation’. 

Comparison of Computational Methods of Coarse- Grain-
ing 

For generalised Langevin equations [21], the dissipative forces 
can be schematised as the presence of a ’memory term’. The defini-
tion of a ’memory kernel’ allows one to apply the analysis also to sam-
ples of data with large statistical noise. From model-reduction theory, 
form a data-driven model for the motion of particles, it is possible 
to extract the relevant items of information for a Markov model. The 
developped algorithm is one based on the ’exponential-interpolation’ 
method, which makes use of the Positive Real Lemma (for optimisa-
tion) for the ’model- reduction’ theory for the recovery of the asso-
ciated Markov model. As an important advantage, large stochastical 
noise is acceptable for the implementation of the algorithm. Applica-
tions are found to ’soft-matter’ systems, also as far as ’dynamic coarse 
graining’ is concerned. Following the guidelines, it is necessary [22] to 
build Markov-State-Models (MSM’s) along pathways to determine the 
free-energies and the rates of the transitions. For these purposes, it is 
useful to study the MSM with slow re- laxation time. For the trajecto-
ries which take a shorter time than the ’slowest relaxation time’, some 
non-Markovian features could be expected.

These trajectories are used to reconstruct the transition prob-
ability matrix (i.e. that of the associate Markov chain studied [23]). 
The method is to be applied to multiple pathways, ’possibly-relaxed’ 
paths.
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Outlook and Perspectives

The present paper is aimed at providing one with analytical ex-
pressions of finite Markov chains apt for the analytical description 
of biochemical materials of macromolecules, whose qualities are 
exptrapolated after the experimental verification of their conforma-
tional dynamics. The implementation of the Markov models which fit 
the experiments are formulated after the originating finite Markov 
chains form which the opportune Markov Models are selected. The 
originating finite Markov chains are to be verified to be apt for soft-
ware implementation, which is achieved after ’pseudo-rando-ness’ 
rather than after ’random-ness’, mostly due to numerical approxima-
tions. The two causes might produce two effects on the originating 
Markov chain. As a first instance, perturbed Markovian objects are 
produced; as a second instance, non-Markovian objects are produced: 
the two possibilities are affected of huge theoretical differences. The 
tools for controlling the two different effects are explained. In the 
case new Markovian objects are produced, the Markovian object can 
be reconducted to the originating (perturbed) Markov chain, which 
share with the non-perturbed Markov chain a common phase space: 
for this reason, the notions of ergodicity and that of strong stability 
are introduced. In the case the new object produced is non-Markovi-
an, the techniques of geometrically- ergodic Markov chains allow one 
to retrieve the wanted items of information about the non-perturbed 
chain. 

The perturbation approaches allow one to recast the decays of the 
correlation functions, after which the Sinai Markov partitions can be 
applied. While from the perturbative approach of the originating Mar-
kov chain the collapse of the wavefunction is taken as an experimental 
postulate, the implementation of the decays of the correlations allows 
one to recover the Lan- Dau–Lifshitz–Gilbert equation, where the lat-
ter contain the ’induction factor’ which is taken as responsible for the 
collapse of the wavefunction. The Markovian-methods approaches 
to the generalised Langevin equations allow one to infer application 
to the description of soft matter. The Langevin equations are indeed 
based on irreversible dynamics of (coarse-grained) observables: no 
complete separation of the time scales is considered. A set of coarse-
grained variables is chosen, whose time evolution contains a mem-
ory kernel. whose decay is ensured. The further degrees of freedom 
are treated as stochastic processes. Further studies complement the 
present analysis. Further characterisation of the Markov heat bath is 
provided with in [24]. Instead of considering the correlation decays, 
the ’convergence times’ of Markov chains are considered in [25]; more 
in details, ergodic Markov chains are analysed within this viewpoint 
in [26]. In [27] and [28], further techniques of comparison of Markov 
chains are presented.
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