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ABSTRACT

Paneth cells (PCs) first described in the late 19th century are columnar epithelial cells of the intestinal glands. 
PCs are easy to recognize based on their locations and the presence of numerous apical granules. PCs are crucial 
in the defense against pathogens thus maintaining intestinal flora and in the protection of nearby stem cells 
thus maintaining epithelium. Besides they can eliminate certain bacteria and trophozoites by their phagocytic 
ability and engulf the neighboring apoptotic intestinal epithelial cells. The altered integrity increases the risk 
of developing inflammatory bowel diseases. PCs capture the attention of scientists, especially in terms of 
the role of their antimicrobials in arbitrating host-microbe interactions and the mechanism by which PCs 
mediate in the crypt stem cell niche. This review will provide a brief glimpse into the history, development, 
morphology, function, and clinical importance of PCs.
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Introduction 
The intestinal glands occupying nearly the whole lamina propria 

are tubular glands extending from the lamina muscularis mucosa to 
the base of the intervillous space. The glandular epithelium compris-
es various cell types including enterocytes, goblet cells, enteroendo-
crine cells, Paneth cells (PCs), intermediate cells, and stem cells. Stem 
cells and PCs are located at the base of the intestinal glands. PCs are 
easily recognized due to their zymogen granule content that is strong-
ly acidophilic in staining characteristics (Figure 1A) (Esrefoglu [1]). In 
the small intestines of mice, rats, and humans, the distribution of PCs 
is heterogeneous, with fewer numbers in the duodenum and higher 
numbers towards the ileum (Darmoul, et al. [2,3]). PCs are located all 
along the entire length of the small intestine in healthy individuals, 
but they can also be detected throughout the colon and esophagus 
in diseased individuals (Cheng, et al. [4-6]). PCs are unique cells be-
cause they not only exhibit protein-synthesizing properties but also 
unexpectedly phagocytose certain harmful bacteria and protozoa. 

Even though they are epithelial cells with an endodermal origin, they 
are surprisingly capable of phagocytosis, which helps to maintain 
hemostasis in the intestinal milieu by controlling the intestinal flora. 
More than a century ago, Gustav Schwalbe (1844-1916) who was a 
well-known German anatomist, histologist, and anthropologist first 
described glandular cells with acidophilic granules (Schwalbe, et al. 
[7,8]). 

Schwalbe was the first to describe PCs in the Archiv für mikroskop-
ische Anatomie in 1872. In addition to anthropological research, he 
made scientific studies on the nervous system, lymphatic system, and 
eye. Descriptions such as ‘Schwalbe’s spaces’, ‘Schwalbe’s nucleus’, 
‘Schwalbe’s ring’, and ‘Schwalbe’s line’ refer to his name. In 1888, Jo-
seph Paneth (1857-1890), an Austrian histologist and physiologist, 
reported the results of his detailed morphological analysis of PCs 
(Paneth, 1988) (Bykov [8]). By microscopic examination of the crypts 
of Lieberkuhn in the small intestine, he identified the cells known 
eponimically as Paneth’s cells. He made this discovery two years be-
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fore his death at age 33 because of tuberculosis. Between 1960 and 
1970 research on these cells was accelerated because of the recogni-
tion of the antimicrobial nature of their apical granules (Bykov, et al. 
[8-10]). The results of electron microscopic observation focused on 
secretory granules, lysosomes, and endoplasmic reticulum first ap-
peared in 1964 (Behnke, et al. [11]). Through secretory products and 
their capacity for phagocytosis, PCs manage the intestinal microbio-

ta, maintaining commensal microbes and eliminating noncommensal 
ones. Dysbiosis, characterized by an increase in non-widely distrib-
uted bacteria, can be the result of a reduction of PC secretion (Zhang, 
et al. [12]). PCs still capture the attention of scientists, especially in 
terms of the role of their antimicrobials in arbitrating host-microbe 
interactions and the mechanism by which PCs mediate in the crypt 
stem cell niche.

Figure 1: Light (A) and electron microscopic (B) features of PCs.
A.	 At the base of the intestinal glands of the duodenum PCs with acidophilic granules are obvious. In the submucosa Brunner’s glands are 
marked (asterisks).
B.	 In the human intestinal gland, a PC containing perinuclear rough endoplasmic reticulum (clear arrows) and apical zymogen granules 
(arrow) is observed. Hematoxylin & eosin; X 40, Uranyl acetate & lead citrate; X 6.300; respectively.

Microscopic Features of Paneth cells

PCs are pyramidally shaped epithelial cells with a broader base 
and narrower apical pole. The nucleus is generally oval-shaped, 
sometimes irregular in outline, and the nucleolus is a dense sponge-
like structure (Eltahawy, et al. [13]). They possess an extensive rough 
endoplasmic reticulum, supra-nuclear Golgi apparatus, many mito-
chondria, and apical-orientated cytoplasmic granules (Porter, et al. 
[1,14,15]). PCs are distinguishable from the other cells of the epitheli-
um because of their unique location and eosinophilic apical granules. 
At the electron microscopic level electron-dense apical granules and 
extensive network of endoplasmic reticulum are conspicuous (Es-
refoglu, et al. [1,15,16]) (Figure 1B). Various histochemical staining 
techniques, including eosin, periodic acid Schiff ’s stain, phloxine-tar-
trazine (Lendrum [17]), fluorescent staining (Fano, et al. [18]), and 
pokeweed lectin binding (Evans, et al. [19]) intensely stain the PC 

granules. PC-specific components, primarily lysozyme (Erlandsen, et 
al. [20,21]), and more recently defensins (Porter, et al. [22]) or type-2 
secretory phospholipase A2 (Nevalainen, et al. [23]), have allowed for 
more accurate labeling for PCs. The granules include more than 50 
substances, including trypsinogen, IgA, TNF-alpha, alpha 1-antitryp-
sin, human alpha defensin 5 and 6, lysozyme, secretory phospholi-
pase A2, osteopontin, and catecholamines. The main ingredient of the 
granules is human alpha defensin 5, which accounts for roughly 90% 
of the mixture (Porter, et al. [14]). 

Comparative ultrastructural analysis of Satoh et al. (Satoh, et al. 
[24]) revealed that granule morphology varies among the species. It 
was discovered that PCs from hares, guinea pigs, humans, monkeys, 
and bats have secretory granules with homogenous electron-dense 
components. In humans, (Figure 1B), monkeys, and bats, immature 
granules near the Golgi apparatus sometimes show bipartite sub-
structure. 
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Development of Paneth cells

The origin of the epithelial derivatives of the intestines is the en-
dodermal germ layer. The proximal part of the duodenum is derived 
from the foregut whereas the distal part of the duodenum, jejunum, 
and ileum are derived from the midgut (Esrefoglu [25]). PC differen-
tiation is the result of intricate interactions between several factors. 
The Wnt pathway and the expression of SRY-Box transcription factor 
9 (Sox9), one of its targets, are the main factors influencing differ-
entiation (Bastide, et al. [26,27]). A favorable environment is created 
for the progenitor cells to differentiate into PCs by the high concen-
tration of Wnt and the limited supply of Notch (Farin, et al. [28-30]). 
A distinct differentiation profile is induced by Wnt activation, which 
stabilizes and translocates β-catenin to the nucleus where it interacts 
with several T cell factor (TCF) molecules. TCF4 is a PC maturation 
regulator that induces a PC gene program in the developing gut of the 
mice (van Es, et al. [31]). Sox9 and SAM-pointed domain-containing 
ETS transcription factors are involved in both PC and goblet cell dif-
ferentiation (Bastide, et al. [26,32]). Since most research on stem cell 
niche and PC differentiation has been performed in rodents, some dif-
ferent factors can be effective in humans. Hence, in human and mouse 
organoids important differences in niche factors have been detected 
(Sato, et al. [33]). In humans, the intestinal glands appear around the 
10th gestational week, soon PCs appear between the 11 to 13.5th 
weeks in the small intestines and also in the colon (Moxey, et al. [34-
37]). 

Except for pathological situations, they are restricted to the small 
intestine until after 17 weeks of gestation (Mallow, et al. [37]). The 
development of PCs can be observed by examining their cytoplasmic 
granules, which enlarge and become heterogeneous after 20 gesta-
tional weeks (Moxey, et al. [34]). Until a sufficient number of matured 
and functional PCs is reached at term, the number of PCs progres-
sively increases with a considerably more rapid expansion after the 
29th week (Umar [38]). The expression of human alpha‐defensin 5 
(HD5) which is a marker of the immune competence of PCs increases 
after the 29th week of gestation (Heida, et al. [39]). Between weeks 
29 and 37, the number of PCs and the level of HD5 rapidly increases 
(McElroy, et al. [40]). Since epithelial maturation of the intestines is 
not completed at birth, growth factors and cytokines derived from 
breast milk, interstitial fluid, and systemic circulation help to com-
plete maturation during postnatal life (Montgomery, et al. [41]). PC 
expression is low in the human, mice, and rat newborns, PC numbers 
and secretory products significantly increase during the postnatal pe-
riod (Bry, et al. [37,42,43]), independently of exposure to microorgan-
isms (Bry, et al. [42]). A steady count of PCs per crypt is established 
in early adulthood. Several factors have been suggested to impact the 
total number of PCs including gestational age at birth, the manner of 
delivery, nursing (Porter, et al. [14]), the weaning diet and duration, 
dietary preference, and medical problems (Umar, et al. [4,38]). 

In a healthy person, the number of PCs remains relatively con-
stant for up to 20 years (Stappenbeck, et al. [44]) which is five to fif-

teen PCs per crypt. PCs are especially prevalent in the terminal ileum 
which has the highest load of microorganisms (Luvhengo, et al. [45]). 
PCs undergo apoptotic cell death at the end of their lifespan which is 
longer than that of the enterocytes (Günther, et al. [46]). Apoptosis is 
characterized by abundant expression of pro-apoptotic protein ARTS 
(apoptosis-related protein in the TGF-β signaling pathway) in PCs 
(Koren, et al. [47]). 

Secretory Activity of Paneth cells

As mentioned above, PCs with extensive rough endoplasmic retic-
ulum, prominent Golgi apparatus, many mitochondria, and numerous 
granules are typically protein-secreting cells. More than 50 ingredi-
ents are present in the granules, including trypsin, trypsinogen, IgA, 
TNF-alpha, alpha 1-antitrypsin, human alpha-defensin 5 and 6 (HAD5 
and HAD6), lysozyme, heavy metal ions such as zinc, copper and sele-
nium, etc. (Porter, et al. [14]). PCs release their granules into the crypt 
lumen via exocytosis in a manner of merocrine secretion in response 
to a range of stimuli, such as bacterial cell surface molecules (Ayabe, 
et al. [48]), acetyl cholinergic agonists (Satoh, 1998), and other Toll-
like receptor agonists (Rumio, et al. [49]). The release of granules by 
PCs in response to heat-killed or live bacteria (Satoh Y, et al. [50-52]) 
or microbial products such as lipopolysaccharide and lipoteichoic 
acid (Ayabe, et al. [48]) increases the concentration of luminal anti-
microbials. Following degranulation of PCs, granules are replenished 
immediately, usually within 24 hours (Zhang, et al. [12]). The results 
of the study by Vaishnava et al. [53] indicate that PCs use cell-au-
tonomous MyD88-dependent toll-like receptor (TLR) activation to 
identify enteric bacteria. This activation causes the development of a 
comprehensive antimicrobial program that includes RegIIIγ, RegIIIβ, 
CRP-ductin, and RELMβ. According to their findings, the transloca-
tion and spread of bacteria across the mucosal barrier are inhibited 
by PC-intrinsic MyD88 activation. To protect the host against infec-
tions by Listeria monocytogenes, S. aureus, and Toxoplasma gondii, 
MyD88-dependent pathways are critical (Scanga, et al. [54,55]). 

In humans, two classes of antimicrobial peptides which are cathe-
licidins and defensins have been identified. In the neonatal period, 
cathelicidins possessing antibacterial, antiviral, and antifungal ac-
tivities are exclusive (Lueschow, et al. [56]). Defensins are classified 
as alpha‐defensins which are also known as cryptidins in mice and 
beta‐defensins. Alpha‐defensin is produced by PCs and neutrophils, 
and beta‐defensins are produced by epithelial cells (Gassler, et al. 
[57,58]). The alpha-defensins are produced as pre-pro-peptides. 
Pro-defensins undergo proteolytic cleavage to become active al-
pha-defensins after losing their signal peptide during the transition 
from the ER into the secretory vesicles. In human PCs, trypsin which 
is stored as trypsinogen and activated after or during secretion is re-
sponsible for the proteolytic maturation (Ghosh, et al. [59]). Only two 
enteric alpha-defensins which are HD5 and HD6, are produced by the 
human body despite the genome encoding ten alpha-defensins (Pa-
til, et al. [60]). Humans express neutrophilic alpha-defensins, which 
are not expressed in mice (Shanahan, et al. [61]). HD5 possesses lec-
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tin-like characteristics and acts as a harpoon by rupturing bacterial 
membranes. Human HD6 is different from the other alpha-defensins 
in terms of its binding properties. Rather than being bactericidal or 
bacteriostatic, HD6 works by first attaching itself to the proteins on 
the surface of the bacteria. This initial binding leads to a gradual bind-
ing to the anchoring ligand, which in turn creates self-assembling 
peptide nanofibrils and nano nets that encircle the targeted bacteria. 

The captured bacteria cannot invade the mucosa (Bevins, et al. 
[62-64]). Since HD5 and HD6 can influence DNA and RNA replication 
and resemble viral coats, they possess indirect antiviral effects (Bev-
ins, et al. [65,66]). Some of the other less well-defined antimicrobi-
al proteins produced by PCs are the weakly antimicrobial secretory 
leukocyte inhibitor (SLPI), immunoglobulin A (IgA), and M (IgM) 
(Bergenfeldt, et al. [67-69]). Secretory IgA, released from the PC cyto-
plasm inhibits the adhesion and adsorption of viruses and bacteria in 
the intestinal mucosa (Wang, et al. [70]). Moreover, PCs are a signif-
icant source of cathepsin G, which destroys pathogens, regulates the 
immune response, and sterilizes the intestinal epithelium (Zamolod-
chikova, et al. [71]). Interestingly, microorganisms stimulate PCs to 
release a large amount of lysozyme and cathepsin G, which in turn kill 
harmful pathogens and mediate homeostasis of the intestinal flora 
(Burclaff, et al. [72]). PCs release chemicals such as lysozyme, secre-
tory phospholipase A2, and c-type lectins in addition to antimicrobial 
peptides. An enzyme called lysozyme is specifically responsible for 
hydrolyzing peptidoglycan found in bacterial cell walls. The lysozyme 
C gene, which is expressed in PCs, is the only lysozyme that humans 
encode (Bevins, et al. [14,58,62]). PCs have a constitutive expression 
of bactericidal secretory phospholipase A2, which is particularly ef-
fective against Gram-positive bacteria (Bevins, et al. [62,73]). 

C-type lectins bind glycan chains of peptidoglycans on the walls 
of Gram‐positive bacteria (Holly, et al. [58, 74]). As a member of the 
C-type lectins family, pancreatitis-associated protein binds sugar moi-
eties on microbial surfaces resulting in enhanced binding to phago-
cytes (Lasserre, et al. [52,75]). Unlike defensins, c‐type lectins are ex-
pressed after the induction of Toll‐like receptor pathways (Bevins, et 
al. [62]). Antimicrobial peptides produced from PCs help to keep the 
gut microbiota in a healthy state and guard against bacterial infec-
tions. (Clevers, et al. [76]). Antimicrobial peptides either cause patho-
gens’ cell membranes to become micellized or inflict damage to the 
membrane’s surface, opening up sizable holes that pierce deeper into 
the hydrophobic cell membrane (Porter, et al. [14,77]). For a variety of 
enzymatic activities in PCs, heavy metal ions may be necessary. More-
over, they may enhance the antimicrobial activity of PCs by acting as 
direct harmful compounds at high concentrations or by working in 
concert with other antimicrobial components of PCs (Wilson, et al. 
[78,79]). Zinc is not only directly antibacterial but also contributes to 
PC antimicrobial activities (Wallaes, et al. [80]).

Paneth Cells and Stem Cell Niche

PCs respond to autocrine, paracrine, or endocrine signals in ad-
dition to performing autocrine, paracrine, and endocrine tasks. Close 

relationships and direct communication take place between PCs 
and the first tier of intestinal stem cells, also known as Lgr5+ cells 
or crypt-base columnar cells (Sato, et al. [33]). The Lgr5+ intestinal 
stem cells have the least capacity to repair any damage to their DNA 
(Luvhengo, et al. [45]). The secretory products of PCs tightly regu-
late the proliferation and differentiation of the Lgr5+ intestinal stem 
cells in the niche area. To maintain the regular replacement of short-
lived exfoliating surface epithelial cells, PCs protect and control the 
activity of Lgr5+ intestinal stem cells and their derivatives (Sato, et 
al. [33]). Secretions from PCs in the proximal parts of the small intes-
tine influence the growth and function of distally situated stem cells 
and their derivatives (Salzman [81]). By delivering growth-promoting 
molecules including Wnt3a, Dll4, epidermal growth factor (EGF), and 
transforming growth factor-α (TGF-α) as well as metabolites like lac-
tate and cyclic ADP ribose, PCs support the stem cell niche (Sato, et al. 
[33,82]). PCs can facilitate communication between specific bacterial 
communities and stem cells. The stem cells produce lactic acid which 
binds to the lactate G-protein-coupled receptor on PCs. 

The binding increases Wnt3a expression in PCs, which in turn 
enhances Wnt signaling in stem cell niches (Lee, et al. [83]). The oth-
er role of the PCs is to nourish the intestinal stem cells (Booth, et al. 
[84.85]). PCs use the glycolytic pathways to obtain energy, while in-
testinal stem cells use the mitochondria’s aerobic metabolism to pro-
duce ATP. The lactic acid produced by a PC is transferred into adjacent 
intestinal stem cells for utilization in metabolism. PCs can detect the 
body’s fed state and then modify intestinal stem cell activity under 
that sensation (Luvhengo, et al. [45]). Under the influence of peristal-
sis, PCs secrete their main products together with water and chloride 
ions to bathe the crypt environment in a manner that is favorable to 
the functioning of intestinal stem cell tiers (Porter, et al. [14,33,84]). 
By producing antimicrobial peptides, PCs also aid in sterilizing the 
stem cell zone, safeguarding intestinal stem cells. (Bevins [86]). 

Unexpected Phagocytotic Activity of Paneth Cells

Professional phagocytes like neutrophils and macrophages use 
phagocytosis as their primary method of eliminating microorganisms. 
On the other hand, phagocytotic activity is an unexpected engagement 
for the epithelial cells. Epithelial cells, however, also demonstrate po-
tent phagocytic ability—a process referred to as “internalization”—
when combating a range of bacterial infections (Plotkowski, et al. 
[87,88]). Spiral-formed bacteria and trophozoites of the flagellate 
Hexamita muris were identified in the digestive vacuoles of PCs from 
rats (Erlandsen, et al. [89]). S. Typhimurium was also demonstrated in 
the PCs of infected mice (Bel, et al. [90]). Thus, epithelial cells can be 
considered as facultative or non-professional phagocytes. Phagocyto-
sis capacities and methods of the epithelial cells are quite different 
from those of the professional phagocytes. Professional phagocytes 
recognize the pathogen-related molecules using pattern recognition 
receptors (PRRs) and actively phagocytose them. A significant part 
of the process is antibody-mediated opsonization (Mosser, et al. 
[91]). Nonprofessional phagocytes do not express opsonic phagocy-
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tosis-related receptors. Instead, the host cells actively participate in 
the internalization process by allowing the pathogen to enter them. 
The pathogens use two distinct mechanisms which are the “zipper” 
and “trigger” mechanisms to enter the epithelial cells (Günther, et al. 
[92]). In the zipper mechanism, cell adhesion to the host membrane 
is facilitated by host surface proteins such as cadherins and integrins 
(Veiga, et al. [93]). 

The attachment of pathogens causes the reorganization of the 
actin cytoskeleton, which leads to internalization. The zipper mech-
anism is used for internalization by a wide range of bacteria, includ-
ing Listeria monocytogenes, Staphylococcus aureus, Helicobacter pylo-
ri, and Yersinia enterocolitica (Günther, et al. [92,93]). In the trigger 
mechanism, soluble chemicals secreted by the pathogens cause the 
reorganization of the actin cytoskeleton resulting in the formation 
of a phagocytic cup and ultimately internalization. Actin fiber orga-
nization results in the formation of membrane ruffles which enfold 
the pathogen, fuse, and eventually form a pathogen-containing vesi-
cle. Examples of bacteria using this trigger mechanism are Salmonel-
la sp. and Shigella sp. colonizing intestinal epithelial cells (Günther, 
et al. [92,93]). The epithelium expresses various PRRs that actively 
recognize the invading microorganism, so the epithelium releases cy-
tokines and chemokines in response to the invasion (Günther, et al. 
[92]). To prevent dysbiosis and/or harmful microbial invasion, PCs 
include PRRs, which comprise nucleotide-binding oligomerization 
domain-like (NOD) and TLR receptors. These receptors are used by 
PCs to continuously sample the composition of the microbiome in the 
intestinal lumen. (Lievin-Le Moal, et al. [77]). The main principles of 
phagosome maturation in professional and non-professional phago-
cytes are relatively similar. In both cell types, after the engulfment of 
the pathogen, phagosome fuses with lysosome, and phagolysosome 
formation occurs (Blanchette, et al. [94]). 

However, in non-professional phagocytes, phagolysosome forma-
tion is slower than in professional phagocytes. Furthermore, lysosome 
numbers in non-professional phagocytes are much lower than those 
in professional phagocytes (Saftig [95]). Non-professional phagocytes 
do not prioritize phagocytosis as much as professional phagocytes do, 
besides these cells cannot eradicate microorganisms with the same 
level of effectiveness. Efferocytosis which removes apoptotic cells by 
phagocytes was recently identified as a new function of PCs. Shank-
man et al. (Shankman, et al. [96]) illustrated that PCs can effectively 
engulf the neighboring apoptotic intestinal epithelial cells, hence re-
ducing local inflammation and contributing to gut homeostasis. CD95 
receptors expressed on the basolateral surface of intestinal epithelial 
cells can trigger apoptosis in the intestine (Strater, et al. [97]). PCs 
secrete CD95 ligands to drive apoptosis of epithelial cells suggesting 
the potential role of PCs in regulating epithelial integrity (Moller, et al. 
[98]). The apoptotic epithelial cells at the villus tip are shed into the 
lumen (Blander, etb al. [99]), and other apoptotic epithelial cells are 
engulfed by professional and non-professional phagocytes (Arand-
jelovic, et al. [100,101]). PC deletion leads to apoptotic cell increase 

and efferocytosis disappearance in crypts under homeostasis and ir-
radiation conditions (Shankman [96]).

Relationship Between Paneth Cells and Diseases

Anatomical, functional, and pathological alterations in PCs are an-
ticipated as the cause or consequence of digestive disorders, given the 
important role that PCs play in maintaining the stem cell niche and 
the microbial ecology. Before, during, or following the onset of the dis-
ease, the number, position, distribution, and microscopic features in-
cluding organelle and granule morphology and quantity may change 
resulting in PC dysfunction. Alteration in the composition of the gut 
microbiota is called ‘dysbiosis’ which is characterized by an increased 
number of pathobionts, but fewer symbionts and is closely related to 
the altered integrity of PCs. Oxidative stress, bacteriophage induction, 
and the secretion of bacterial toxins can trigger rapid shifts among 
intestinal microbial groups thereby yielding dysbiosis (Weiss, et al. 
[102]). Dysbiosis increases the risk of developing inflammatory bow-
el diseases (IBD) such as ulcerative colitis (UC), Crohn’s disease (CD), 
necrotizing enterocolitis (NEC), and indeterminate colitis (Tomasello, 
et al. [103-106]). Besides, metabolic disorders such as obesity and di-
abetes type II are associated with intestinal dysbiosis (Weiss, et al. 
[102]). Moreover, microbial intestinal dysbiosis has been suggested 
to play a prominent role in the pathogenesis of central nervous sys-
tem-related disorders such as Alzheimer’s disease, Parkinson’s dis-
ease, Huntington’s disease, and multiple sclerosis. The interrelation 
between dysbiosis and the increased prevalence of neurodegenera-
tive diseases is attributed to the disrupted integrity of the intestinal 
barrier leading to the transition of pathogens and toxic metabolites 
into the circulation causing the dysregulation of the Gut-Brain Axis 
(GBA) (Chidambaram, et al. [107]). 

Inflammatory bowel diseases including UC and CD are both relat-
ed to dysbiosis. In UC, the pathogens recognized as foreign by the PCs 
lead to an inflammatory response in the bowel wall (Salzman [81]). 
CD is an IBD that affects mainly the ileum and colon. The etiology of 
CD comes from genetic and environmental factors, and it affects most-
ly the immune response and intestinal barrier (Torres, et al. [108]). 
CD is associated with abnormal bacterial adherence to the intestinal 
mucosal surface and abnormal composition of colonizing microbiota 
in the intestine, two phenomena that implicate abnormal PCs (Sartor, 
et al. [109,110]). Recent studies have shown that abnormal PC mor-
phology and/or decreases in a-defensins are present in 50% of pedi-
atric CD patients (Perminow, et al. [111,112]). Thus, in CD, the ability 
of PCs to secrete sufficient antimicrobial peptides to prevent dysbio-
sis is diminished (Simms, et al. [113]). Wehkamp and colleagues (We-
hkamp, et al. [114]) reported that α-defensin expression in PCs is re-
duced in ileal CD compared with expression in either healthy controls 
or individuals with other categories of inflammatory bowel disease. 
The gene that is mostly associated with CD is NOD2 (Wang, et al. [69]). 
As mentioned above, NOD and TLR receptors, the PRRs, are crucial 
for PCs to prevent dysbiosis and/or harmful microbial invasion (Liev-
in-Le Moal, et al. [77]). NOD2 is associated with autophagy, response 
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against bacteria, regulation of alpha-defensin expression, and AMP 
sorting in PCs (Yang, et al. [115]). In PCs, NOD2 can upregulate the 
expression of HD5 and HD6 through the nuclear factor‐κB pathway 
and can downregulate the expression of HD5 and HD6 through the 
mitogen‐activated protein kinase pathway.

CD is associated with mutations in NOD2 resulting in an insuffi-
cient response against bacteria, decreased secretion of AMPs, or the 
targeting of these peptides to lysosomes (Ogura, et al. [115,116]). In-
creased risk of developing CD is associated with the abnormalities of 
other autophagy‐related genes including autophagy‐related 16‐like 
1 (ATG16L1), leucine‐rich repeat kinase 2 (LRRK2), immunity‐relat-
ed GTPase family member M (IRGM1) (Wang, et al. [69]) and Xbox‐ 
binding protein‐1 (XBP1) (Yang, et al. [115]). Thachil and colleagues 
(Thachil, et al. [117]) reported that autophagy is specifically activated 
in PCs from CD patients, independently of mucosal inflammation or 
disease-associated variants of Atg16L1 or IRGM. In these cells, acti-
vation of autophagy in PCs was associated with a significant decrease 
in the number of secretory granules. NOD2 is associated with the 
recruitment of ATG16L1 which is expressed by PCs as well as anti-
gen-presenting cells and T lymphocytes (Cadwell, et al. [104]). AT-
G16L1 is a gene involved in the formation of autophagosomes (Yang, 
et al. [115]). ATG16L1 deficiency is related to abnormal exocytosis 
(Cadwell, et al. [104]). LRRK2 gene important to maintain the nor-
mal inflammatory response in the intestines (Wallings, et al. [118]) 
is also related to an increased risk of developing CD (Wallings, et al. 
[115,118]). IRGM, a protein related to inflammation and autophagy, 
inhibits NLRP3 inflammasome, reducing the transcription of proin-
flammatory cytokines, such as interleukin (IL)‐1β, IL‐18, and TNF‐α. 
Several large-scale genome-wide association studies genetically 
linked IRGM to CD and other inflammatory disorders in which the 
IRGM appears to have a protective function (Mehto et al. et al. [119]). 

IRGM gene variations are associated with increased susceptibility 
to CD (Parkes, et al. [120]). Finally, transcription factor XBP1 abnor-
malities are also associated with the risk of developing CD (Yang, et 
al. [115]). In PCs, the deletion of XBP1 results in endoplasmic reticu-
lum stress, autophagy, and spontaneous ileitis (Adolph, et al. [105]). 
KCNN4, another gene that encodes for the Ca2+-activated potassium 
channel KCa3.1 is associated with CD susceptibility (Simms, et al. 
[121]). Abnormalities in the KCa3.1 channel may disrupt PC granule 
secretion and may result in a deficiency of PC AMPs in small intestinal 
crypts. These results support the idea that PC functional problems are 
the initiators of ileal CD in patients. For preterm infants, one of the 
leading causes of morbidity and mortality, and the most devastating 
intestinal complication, is the development of NEC (Patel, et al. [122]). 
Theories have been suggested to explain this delay including feeding 
practices, the development of microbial dysbiosis, the accumulation 
of mesenteric hypoxic events (Hackam, et al. [123]), and disruption 
in the function or quantity of PCs (McElroy, et al. [41]). Premature 
infants do not possess a full complement of the functional PC popu-
lation. As PCs are essential to regulate the intestinal bacterial flora, 

disruption of normal PC function, especially in the immature intestine 
could very well be involved in developing the NEC (Lueshcow, et al. 
[56]). Decreased numbers of lysozyme-positive PCs were document-
ed in infants with surgical NEC compared to similar-aged surgical 
controls (Coutinho, et al. [124,125]). 

As the premature infant is exposed to foreign antigens, there is an 
increase in the production of inflammatory cytokines (Lueshcow, et 
al. [56]) creating a more aerobic state leading to a competitive advan-
tage for Proteobacteria. As the microbiome becomes more dysbiotic, 
it suppresses anti-inflammatory mechanisms but increases intestinal 
inflammation (Elgin, et al. [126]). Increasing inflammation can then 
lead to a loss in PCs (Brown, et al. [127]). This limited number of PCs 
has limited capacity for protection via AMPs (Satoh, et al. [50]). As 
AMP reduction reaches a critical threshold, bacterial invasion of the 
epithelial tissue begins to occur (Sherman, et al. [128]). Salzman et al. 
found that in NEC patients, PC numbers were increased and expres-
sion of defensin HD5 mRNA was not paralleled by a similar increase 
in HD5 peptide (Salzman, et al. [129]). They suggested that the lower 
peptide levels in PC could reflect a defect in protein synthesis or an 
increase in secretion. UC is a chronic immune-mediated inflammatory 
disorder of the colon that is hypothesized to be related to exposure to 
environmental risk factors leading to inappropriate immune respons-
es to enteric commensal microbes in genetically susceptible individ-
uals (Du, et al. [130]). Patients with UC have disturbances in the com-
position of their gut microbiota, coined “microbial dysbiosis,” with a 
reduction in bacterial diversity (Nagalingam, et al. [131,132]). In UC, 
the colonic antimicrobial barrier, formed by a mucus layer retaining 
the AMPs, is impaired despite the upregulated epithelial peptide pro-
duction (Ostaff et al. et al. [133,134]). 

Nevertheless, the pathogenesis of UC is complex, and the interac-
tion between the host and intestinal microbiota may be a key factor. 
Under normal circumstances, the host’s innate and adaptive immuni-
ty prevents the invasion of harmful bacteria while tolerating the nor-
mal microbiota. However, if the microbiota is imbalanced, immunity 
is compromised. The intestinal mucosal immune response is over-
stimulated, which can lead to disease (Shen, et al. [135]). The shifts 
in the balance of the mucosal microbiota in UC towards increased 
proportions of pro-inflammatory bacteria, especially Enterobacte-
riaceae, and decreased proportions of anti-inflammatory bacteria, 
such as Bacteroides spp., may initiate and exacerbate inflammation 
(Jalanka, et al. [136]). Decreased expression of antimicrobial defensin 
β 1 (DEFB1), a key effector of the innate immune system (Planell, et 
al. [137]) linked to an increased Enterobacteriaceae abundance may 
cause activation of the mucosal immune system and activity of the 
inflammatory disease (Jalanka et al. [136,138,139]).

Conclusion
PCs are crucial in the defense against pathogens thus maintaining 

intestinal flora and in the protection of nearby stem cells thus main-
taining the epithelium. Although phagocytotic activity is an unex-

https://dx.doi.org/10.26717/BJSTR.2024.57.008939


Copyright@ : Mukaddes Eşrefoğlu | Biomed J Sci & Tech Res |   BJSTR.MS.ID.008939.

Volume 57- Issue 1 DOI: 10.26717/BJSTR.2024.57.008939

48749

pected engagement for the epithelial cells, PCs can eliminate certain 
bacteria and trophozoites by their phagocytic ability. Besides, these 
cells can effectively engulf the neighboring apoptotic intestinal epi-
thelial cells, hence reducing local inflammation and contributing to 
gut homeostasis. The altered integrity of PCs results in dysbiosis char-
acterized by an increased number of pathobionts versus symbionts. 
Dysbiosis, in turn, increases the risk of developing inflammatory bow-
el diseases such as ulcerative colitis, Crohn’s disease, and necrotizing 
enterocolitis. PC morphology and function are the major research 
focus in areas including inflammatory bowel diseases, infection dis-
eases, and regenerative medicine.
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