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ABSTRACT

Background: The relationship between anesthesia and neural circuits has garnered increasing attention in 
recent years.

Methods: This study conducted a comprehensive bibliometric analysis and review of research literature in 
this field, focusing on publications, contributing countries, references, and keywords.

Results: Our analysis revealed a significant rise in publications from 2019 to 2021, indicating growing interest 
and research activity in understanding the neural mechanisms underlying anesthesia. Among the contributing 
countries, the United States and China emerged as the most prolific and influential, underscoring their leading 
roles in advancing research in this area. Furthermore, we identified key authors who have made substantial 
contributions to the literature, highlighting their impact on shaping the discourse surrounding anesthesia 
and neural circuits. Keyword analysis uncovered several prominent themes, including general anesthesia, 
consciousness, and specific anesthetic agents such as propofol, isoflurane, and ketamine. Additionally, our 
study explored the potential relevance of anesthesia-induced effects on sleep, memory, and unconsciousness 
to clinical practice. Through a review of relevant studies, we elucidated the specific pathways implicated 
in these effects, shedding light on the underlying neural mechanisms. Moreover, our analysis delved into 
the unique mechanisms of action of different anesthetic agents, such as sevoflurane, isoflurane, propofol, 
ketamine, etomidate, and dexmedetomidine. We discussed their distinct impacts on neural circuits and their 
implications for anesthesia-induced unconsciousness. Notably, while some agents like dexmedetomidine 
primarily induced sedation, others like ketamine have potential applications beyond anesthesia, particularly 
in the treatment of mood disorders. 

Conclusions: Overall, our study underscored the importance of understanding the neural circuits involved in 
anesthesia to enhance patient safety and optimize anesthesia practices. By elucidating the intricate interplay 
between anesthetic agents and neural pathways, we can pave the way for the development of novel anesthetic 
techniques and therapeutic interventions.
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Background
Approximately 250 million individuals worldwide undergo sur-

gical anesthesia annually [1], a crucial practice aimed at alleviating 
pain, ensuring patient safety, and facilitating optimal surgical con-
ditions during surgery or invasive procedures. Anesthesia refers to 
the administration of anesthetics to induce a regulated, temporary 
state of sensory loss or unconsciousness in individuals. It effectively 
addresses patients’ conditions through four aspects: analgesia, seda-
tion, muscle relaxation, and loss of consciousness [2]. Prior studies 
indicate that general anesthesia does not globally suppress the brain 
as a whole; instead, it modulates the functioning of specific neural 
networks [3-5], particularly by regulating neural circuits. Neural cir-
cuits consist of intricate connections established among various types 
of neurons in the brain. The interplay between the electrophysiolog-
ical characteristics of neurons in vivo and the organization of neural 
circuits gives rise to a sophisticated neuronal network [6]. Neural cir-
cuits exert their influence within organisms through various configu-
rations such as series, parallel, feedforward, feedback, positive feed-
back, negative feedback, and more [7]. 

Research has demonstrated the association of neural circuits with 
the processes of pain generation and consciousness. For instance, 
Redinbaugh, et al. (2018) identified that thalamocortical circuits play 
a specific role in regulating the onset and cessation of consciousness 
in macaques [8]. Additionally, local circuits involving medial prefron-
tal cortex (mPFC)-midbrain periaqueductal gray matter (PAG) neu-
rons have been implicated in the development of chronic pain [9]. The 
administration of anesthetics significantly mitigates the risk of pain 
by modulating these neural circuits. Understanding the current state 
of research, identifying research focal points, and forecasting future 
directions are essential for advancing knowledge in a particular field. 
Bibliometric analysis, employing mathematical, statistical, and quan-
titative methods, effectively examines the internal relationships and 
distribution patterns within literature [10]. Despite the increasing 
publication of relevant papers on nerve circuitry in anesthesia, there 
remains a dearth of systematic reports on measurement studies in 
this domain.

Hence, this study aims to address this gap by comprehensively an-
alyzing all research papers on neural circuits and anesthesia indexed 
in the Web of Science (WOS). Our analysis encompasses publication 
trends, global contributions, keyword analysis, and more, aiming to 
delineate the predominant trends in the application of neural circuits 
in anesthesia research and provide guidance for future investigations. 
This paper employs bibliometric analysis to visually present four key 

aspects of anesthesia and neural circuits: publication trends, global 
contributions, reference mapping, and keyword co-occurrence. Addi-
tionally, it synthesizes information on neural circuits and their tar-
gets pivotal in the induction of general anesthesia by commonly used 
anesthetics. This synthesis serves to furnish a theoretical foundation 
for subsequent scholars interested in advancing research within this 
field.

Materials and Methods
The primary keywords utilized for the search were (“Anesthesia”) 

OR (“Anesthetics”) AND (“neuronal circuit” OR “neural circuit” OR 
“nerve circuits”). Relevant literature on anesthesia and neural circuits 
was collected from the Web of Science (WOS) database. The search 
methodology and screening process are outlined in Figure 1A. Our 
focus was on original articles, excluding other types such as commen-
taries and reviews. All data, presented in plain text format, encom-
passed information on countries/regions, titles, keywords, authors, 
institutions, and journals. The search was concluded on September 
13th, 2022, to mitigate any discrepancies arising from database up-
dates. For the analysis of country/region contributions and keyword 
significance, VOS viewer 1.6.18 was employed. In the network gen-
erated by VOS viewer, the size of each node indicated the number of 
publications, with larger nodes representing more publications. Links 
between nodes depicted the relevance among various parameters 
(countries/regions, institutions, authors, or keywords), with thicker 
links indicating stronger connections. Furthermore, domain over-
lay analysis was conducted using both VOS viewer 1.6.18 and Pajek 
645.16. Data processing and visualization, including publication year 
statistics, citation frequency analysis, and the calculation of average 
citation time and H-index for each country, institution, or author per 
project, were carried out using Microsoft Excel 2019 and Origin. Giv-
en that our analysis was based on publicly available datasets, an ethi-
cal statement was deemed unnecessary for this study.

Results Publication Trend

A total of 164 articles concerning the utilization of neural circuits 
in anesthesia were incorporated into the final bibliometric analysis. 
Examination of annual publication figures revealed a notable upward 
trajectory in research output over the years, particularly evident from 
2010 to 2017 (with 5-15 papers annually) and 2018 to 2022 (with 
10-25 articles annually). A significant surge in publications from 
2019 to 2021 underscores the growing popularity and widespread 
attention garnered by the application of anesthesia in neural circuits 
(Figure 1B).
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Figure 1: Flow chart of the study and publication trend.
A.	 Flow chart of the screening process for research on neural circuits in anesthesia or anesthetics. 
B.	 Annual publications and citations worldwide of neural circuits to anesthesia or anesthetics.

Global Contribution

Regional co-authorship analysis revealed interconnectedness 
among 18 countries and regions, with the USA serving as a research 
hub, maintaining close collaborations with China, Germany, and the 
UK (Figure 2A). Despite relatively lower research outputs from Japan, 
Italy, and Israel, the intensity and volume of their contributions sug-
gest strong interrelations with other countries and significant influ-
ence on international research. To visualize the global distribution 
of publications by country, VOS viewer was utilized and normalized 
using the correlation intensity method, with a minimum publication 
threshold set at two. Approximately 19 countries, including the Unit-

ed States (USA), China, Canada, the United Kingdom (UK), and others, 
met this threshold (Figure 2B). In terms of publication numbers, the 
USA emerged as the most prolific contributor with 85 publications, 
followed by China (39), the UK (14), and Japan (12) (Table 1). Notable 
journals such as Science, Current Biology, Proceedings of the National 
Academy of Sciences, and Nature Reviews Neurology played a signifi-
cant role in disseminating research on anesthesia and neural circuits 
(Figures 2C & 2D). Regarding total citations, the top three countries 
were the US (3181), China (551), and the UK (486). The highest av-
erage citation rates were recorded for Switzerland (96.20), Canada 
(92.88), and Israel (56.14) (Table 1). These findings underscore the 
predominant influence of the USA and China in this field.
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Figure 2: Articles and journals related to neural circuits to anesthesia or anesthetics published worldwide. (A, B) Network visualization of the 
country distribution of articles. The size of the circles signifies the number of publications, and the width of the connecting line between the 
two circles signifies the intensity of collaboration. (C) Distribution density map of journal publications based on VOS viewer. (D) Network 
visualization of journal publications based on VOS viewer.

Authors Distribution

The three most prolific authors in terms of articles published 
from 1997 to 2022 were Brown Emeryn (12 publications), Akeju 
Oluwaseun (8 publications), and Purdon Patrick (7 publications), 
all based in the United States. Following them was Hai-Long Dong (5 
publications) from China (Table 2). When considering citations, the 
top three authors were Brown Emeryn (1126 citations), Purdon Pat-
rick (937 citations), and Pavone Kara (562 citations), also all from the 
United States (Table 2).

Journal Distribution

An overlay analysis of the cited journals reveals that ‘Anesthesi-
ology’ is the journal with the highest number of citations, followed 
by ‘Frontiers in Neural Circuits’ (Figure 2C). Notably, in recent years, 
journals like ‘Current Neuropharmacology’ and ‘Frontiers in Neuro-
science’ have experienced a rise in citations (Figure 2D).

Table 1: The Top 11 countries contributing to publications related to 
neural circuits for anesthesia or anesthetics.

Country Publications Citations Average citation rate

USA 85 3181 37.42

Peoples R China 39 551 14.13

England 14 486 34.71

Japan 12 507 42.25

Germany 11 320 29.1

Canada 8 743 92.88

Italy 8 204 25.5

Israel 7 393 56.14

Switzerland 5 481 96.2

Scotland 4 152 38

South Korea 4 124 31
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Table 2: The top authors in the field of Neural Circuits for anesthesia or anesthetics ranked by publication and citation numbers.

Author Country Affiliation Publications Citations

Top publications (n ≥ 4)

brown, emeryn USA Harvard Medical School 12 1126

akeju, oluwaseun USA Massachusetts General Hospital and Har-
vard Medical School 8 348

purdon, patrick l USA Massachusetts General Hospital 7 937

dong, hailong CHINA Xijing Hospital, Fourth Military Medical 
University 5 45

pavone, karaj USA Massachusetts General Hospital 5 562

mashour, georgea USA University of Michigan Medical School 4 119

solt, ken USA Massachusetts General Hospital 4 96

Top Citations (n ≥ 330)

brown, emeryn USA Massachusetts General Hospital 12 1126

purdon, patrick l USA Massachusetts General Hospital 7 937

pavone, karaj USA Massachusetts General Hospital 5 562

steriade, m Canada Faculté de Médecine, Université Laval 1 385

kelz, maxb USA University of Pennsylvania Perelman 
School of Medicine 3 354

akeju, oluwaseun USA Massachusetts General Hospital and Har-
vard Medical School 8 348

chen, jingqiu CHIN A The Affiliated Stomatology Hospital of 
Kunming Medical University 2 344

meng, qing cheng USA Perelman School of Medicine University 
of Pennsylvania 2 344

moore, jason t USA University of Pennsylvania Perelman 
School of Medicine 2 344

veasey, sigrid c USA University of Pennsylvania 2 344

sampson, aaron USA Massachusetts General Hospital 1 334

Reference Mapping

We compiled the 25 most cited references (Figure 3B), with the 
most cited being Franks N, 2008, published in Nature Reviews Neu-
roscience, volume 9, issue 5, pages 370-386 (doi: 10.1038/nrn2372).

Keyword Copolymerization Analysis

Keywords serve as a succinct representation of the core themes 
within a paper. Conducting a co-occurrence analysis aids in system-
atically comprehending the research hotspots, progress, and internal 
relationships within the domain of anesthesia-related neural circuits. 
In our study, we set the threshold for keyword occurrences in titles at 
a minimum of 5. Using VOS viewer for this analysis, we established a 
threshold of at least 16 occurrences for a keyword to be deemed sig-
nificant. As a result, 234 keywords were identified and grouped into 
six clusters: general anesthesia, consciousness, propofol, isoflurane, 

ketamine, and brain (Figures 4A & 4B). The temporal distribution of 
these keywords was visualized based on the average year of publica-
tion, demonstrating ongoing updates and advancements in research 
pertaining to anesthesia or anesthetic-related neural circuits. Re-
cently emerging keywords such as ‘plasticity’, ‘bispectral index’, and 
‘propofol’ underscore growing research interests in these areas (Fig-
ure 4C). A co-polymerization analysis, conducted using Cite Space, re-
vealed a concentration of studies on keywords including ‘mechanism’, 
‘isoflurane’, ‘synaptic plasticity’, and ‘volatile anesthetic’ from 1994 to 
2022 (Figure 4D). Over the last three years, there has been a consis-
tent trend in the number of citations across all keywords. Clustering 
analysis along the time axis suggests that ‘neural circuits’, ‘mecha-
nisms’, ‘isoflurane’, ‘synaptic plasticity’, and ‘volatile anesthesia’ have 
been focal points of recent research, potentially indicating directions 
for future investigations (Figure 4E).
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Figure 3: Mapping of references in studies on Neural Circuits for anesthesia or anesthetics.
A.	 Network visualization of cited publications based on VOSviewer. 
B.	 Density map of article reference distribution top cited publications based on VOSviewer. 
C.	 The top 25 references with the strongest citation bursts based on CiteSpace.
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Figure 4: Keyword mapping in studies on Neural Circuits for anesthesia or anesthetics. 
A.	 Clustering analysis of key words based on VOS viewer. 
B.	 Network visualization of keywords based on VOS viewer.
C.	 Chronological order of keywords based on VOS viewer. 
D.	 The top 20 keywords with the strongest citation bursts based on Cite Space. 
E.	 Keyword timeline visualization from 2017 to 2022.

Discussion and Prospect
Overview of Research on the Neural Circuit in General  
Anesthesia 

This paper presents a comprehensive bibliometric analysis of 
research on anesthesia and neural circuits, focusing on publications, 
contributing countries, references, and keywords. The analysis re-
veals a steady increase in publications from 2019 to 2021, reflecting 
growing interest and attention in this field. Notably, nineteen coun-
tries and regions have contributed papers on anesthesia and associat-
ed neural circuits, with China and the USA emerging as the most pro-
lific and influential contributors. Among individual authors, the top 
three, all from the US, include Brown Emeryn (12 publications), Akeju 
Oluwaseun (8), and Purdon Patrick (7), followed by Hai-Long Dong 
(5) from China. In terms of citations, the leading authors are also from 
the USA, with Brown Emeryn (1126 citations), Purdon Patrick (937), 
and Pavone Kara (562) garnering the highest citation counts. This un-
derscores the significant role that the USA plays in research related 
to anesthesia and neural circuits. Keyword analysis reveals current 

focus areas in this field, including general anesthesia, consciousness, 
propofol, isoflurane, ketamine, and brain studies. The keyword time-
line clusters suggest that neural circuits, mechanisms, isoflurane, 
synaptic plasticity, and volatile anesthesia are prominent research 
hotspots in recent years and likely directions for future research.

Concept and Function of General Anesthetics

General anesthetics, administered via inhalation, intravenous 
injection, or intramuscular injection, exert a reversible depressant 
effect on the central nervous system. Clinically, they are categorized 
into two main types: intravenous and inhalation anesthetics [11]. 
These agents vary in potency and efficacy for different neurobiologi-
cal effects (Table 3). They possess sedative and analgesic properties; 
for instance, isoflurane and propofol are commonly utilized for seda-
tion [12,13]. Moreover, certain anesthetics have therapeutic applica-
tions for specific conditions; for example, isoflurane can be employed 
in the treatment of epilepsy [14], while propofol has demonstrated ef-
fectiveness in alleviating depression [15]. Nitrous oxide and ketamine 
induce analgesia by inhibiting glutamate and nicotinic receptors 
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while activating potassium channels, such as TREK-1. Dexmedeto-
midine mediates analgesia through the locus coeruleus-norepineph-
rinergic circuit [16]. Each anesthetic influences unique oscillatory 
dynamics, potentially associated with the modulation of neural cir-
cuits downstream of the brainstem and hypothalamus [17], and al-

ters electroencephalogram (EEG) wave patterns and frequencies. No-
tably, Oluwaseun Akeju’s study administering dexmedetomidine and 
propofol to volunteers revealed a deeper unconsciousness induced by 
prolonged large-amplitude slow oscillations [18]. 

Table 3: Molecular structure and function of commonly used clinical anesthetics.
Administration types Anesthetics Function Receptor

Inhalation anesthetics

Sevoflurane Unconsciousness, sedation, inhalation induction (+) GABAA, Glycine (-) NMDA, ACH

Isoflurane Unconsciousness, sedation, cure continuous epilepsy (+) GABAA, Glycine (-) NMDA

Dexmedetomidine Sedation, analgesia, anti-anxiety, “intraoperative emergence” (+) AMPA, μ-type opioid, (-) NMDA

Intravenous anes-
thetics

Ketamine Unconsciousness, sedation, (+) GABAA

Propofol Sedation, analgesia, anti-anxiety, PRIS, injection pain, allergy (+) GABAA

Etomidate Unconsciousness, sedation, little influence over respiration, 
myoclonus, adrenal cortical suppression (+) α2-AdRs

Ketamine, for instance, reduces γ-aminobutyric acid (GABA) in-
hibitory postsynaptic potential (IPSC)-induced β/γ (13-40 Hz) brain 
wave oscillations [19]. The actions of anesthetics involve multiple 
neural groups; for instance, propofol and sevoflurane inhibit neuronal 
activity and/or increase inhibitory synaptic connections in thalamo-
cortical circuits [20] and induce loss of consciousness (LOC) by ac-
tivating dopamine D1 receptor (D1R)-expressing neurons in the nu-
cleus ambiguous [21]. The role of anesthesia in memory formation is 
significant. Research by Nir Samuel, et al. revealed that circuits within 
the macaque’s amygdala and dorsal anterior cingulate cortex main-
tain aversive memory acquisition under ketamine and midazolam se-
dation [22]. In Drosophila, pentazocine released from dorsal paired 
medial neurons (DPM) inhibits memory formation during isoflurane 
anesthesia [23]. Improper use of anesthetics can lead to adverse ef-
fects; for instance, etomidate increases susceptibility to pneumonia 
in trauma patients [24], and propofol can cause propofol infusion 
syndrome (PRIS), potentially resulting in refractory bradycardia and 

cardiac arrest [14]. In surgical applications, however, anesthetics sig-
nificantly reduce risks and enhance safety.

Study on Neural Circuit Involved in Different Anesthetics 

Based on the insights derived from the aforementioned analyses, 
we conducted a comprehensive review of studies focusing on anes-
thesia and neural circuits, with particular emphasis on areas such as 
sleep, memory, or unconsciousness (Table 4, Figures 5 & 6). We delve 
into their potential relevance to clinical anesthesia and elucidate the 
specific pathways implicated in their effects, such as the inhibition of 
NMDA receptor activity and the upregulation of GABA channel open-
ing (Figure 7). Therefore, drawing on the findings of these analyses, 
we conducted a review of studies on anesthesia and neural circuits, 
particularly those related to sleep, memory, or unconsciousness (Ta-
ble 4, Figures 5 & 6). We explore their potential relevance to clinical 
anesthesia and the specific pathways implicated in their effects, such 
as the inhibition of NMDA receptor activity and the upregulation of 
GABA channel opening (Figure 7).

Table 4: EEG waves evoked by different anesthetics and the neural circuits involved.
Anesthetics EEG Neural circuits Reference

Sevoflurane δ and α Thalamus-cortex, cortex-cortex, PFC-DMH, DMH-VLPO, PVT-BNST, hippocampal interneuron 
circuits 18, 27, 81, 82

Isoflurane δ and α Thalamus-cortex, cortex-cortex, lateral septum-VTA, BF-LC, hippocampal interneuron circuits 10, 32, 86, 87,92, 94, 95

Ketamine β and γ Hippocampus-cortex, amygdala-cingulate, cortex-limbic-striatum circuits 102, 103, 107,118

Propofol α and δ Thalamus, cortex-cortex, NAc-DR, NAc- CG circuits 135, 136, 137,140

Etomidate α, β, δ 
and θ None

Dexdemeto-
midine

Spindle 
body, 
α, δ

LC-cortex, VLPO-TMN circuits 142, 147
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Figure 5: Nucleus accumbens areas where propofol, sevoflurane, and isoflurane act.

Figure 6: Neural circuits and nuclei involved in general anesthesia.
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Figure 7: Mechanism of anesthetics related to GABA channels and NMDA channels.

Sevoflurane: Sevoflurane, a well-tolerated volatile anesthetic 
commonly utilized for inhalation induction, is particularly suitable 
for pediatric patients. Its clinical effects may include bradycardia, 
hypotension, cough, and vomiting. Sevoflurane enhances the activity 
of GABAA-type and glycine receptors [25] and activates double-pore 
potassium channels [26-30], influencing EEG wave patterns. Nota-
bly, sevoflurane induces a significant increase in EEG power in chil-
dren from infancy to 6 years of age, stabilizing at around 21 years. 
α wave (8-13 Hz) coherence is a prominent EEG feature associated 
with sevoflurane-induced unconsciousness in adults [31]. Multiple 
nuclei groups are implicated in sevoflurane anesthesia. The vestib-
ular nucleus (VN), midbrain pontine tegmental area (MPTA), central 
medial thalamus (CMT), dorsomedial thalamus (DMT), and parietal 
association cortex (PAC) within the thalamocortical circuit have been 
identified as mediators of sevoflurane anesthesia [32]. Additionally, 
neural circuits regulating consciousness under sevoflurane anes-
thesia enhance endogenous sleep network activity by activating the 
ventral lateral preoptic area (VLPO) nucleus in the hypothalamus 
[33,34]. The induction of prefrontal cortex (PFC)-dorsomedial hypo-
thalamic nucleus (DMH) glutamatergic and GABAergic-VLPO circuits 
in the DMH boosts neuronal activity [35]. The inhibition of postsyn-
aptic GABAA receptors and background potassium channels in the 
medial parabrachial nucleus (MPB) facilitates anesthesia induction 
[36], while the inhibition of presynaptic Ca2+ channels in hippocam-
pal interneurons and the reduced firing frequency of CMT neurons 
suppress emergence during anesthesia [37].

Emergence from sevoflurane anesthesia involves various circuits 
and nuclei. Research by Sarah L. Reitz, et al. found that activation of 
preprotachykinin-1 (Tac-1) neurons in the preoptic area (POA) in-
duced emergence in mice [38]. Similarly, neurons with dopamine 
receptors in the nucleus accumbens (NAc) are involved in conscious-
ness regulation under sevoflurane anesthesia and promote emer-
gence [21]. Blue light stimulation enhances neuronal activity in the 
suprachiasmatic nucleus (SCN) under sevoflurane, inducing high 
levels of c-Fos expression in the prefrontal cortex (PFC) and lateral 
hypothalamus (LH), thereby facilitating emergence [39]. Transient 
stimulation of the paraventricular nucleus of the thalamus (PVT)-bed 
nucleus of stria terminalis (BNST) pathway also induces behavior-
al emergence in mice and reduces anesthesia depth during induced 
burst suppression [40]. It has been observed that sevoflurane not 
only induces anesthesia but also enhances the intrinsic excitability 
of cerebellar granule cells, shaping neuronal communication without 
altering the neural circuit [41].

Isoflurane: Isoflurane, a halogen-class inhalation anesthetic, was 
introduced clinically before sevoflurane and is predominantly used 
for animal anesthesia. Its molecular formula is C3H2ClF5O. Isoflurane 
targets two-pore potassium channels, NMDA receptors, glycine re-
ceptors, and GABAA receptors. Its interaction with GABAA receptors, 
particularly within thalamocortical circuits, modifies inhibitory post-
synaptic current production in excitatory spiny stellate cells and cone 
cells of the auditory cortex [42]. Similarly to sevoflurane, isoflurane 

https://dx.doi.org/10.26717/BJSTR.2024.56.008914


Copyright@ :  Qiu-Xia Xiao and Liu-Lin Xiong | Biomed J Sci & Tech Res |   BJSTR.MS.ID.008914. 48582

Volume 56- Issue 5 DOI: 10.26717/BJSTR.2024.56.008914

prevents action potential inhibition by activating potassium channels 
in the CMT and reducing central thalamic neuronal firing [37]. Isoflu-
rane’s effects extend to the modulation of GABAergic neurons in the 
lateral septum, which send inhibitory signals to the ventral tegmen-
tal area (VTA), influencing the emergence and depth of anesthesia 
[43,44]. It directly activates neurons in the VLPO [45] and alters the 
activity of multicellular biological interneurons [46].

Activation of the histaminergic tuberomammillary nucleus (TMN) 
induces emergence from isoflurane anesthesia. In Drosophila, TMN 
damage following isoflurane exposure leads to a loss of the righting 
reflex and extended emergence time, although it does not significant-
ly affect sensitivity to other anesthetics like propofol, pentobarbital, 
and ketamine [47]. Post-isoflurane anesthesia, stimulation of anterior 
nuclear giant cells (aNGC) robustly activates specific neuronal groups 
in the reticular activating system, enabling extensive reactivation of 
cortical function and motor behavior in rodents. This involves coor-
dinating multiple emergence-promoting circuits, such as the locus 
coeruleus and parabrachial nucleus [48]. Mice lacking excitatory ami-
no acid transporter protein 3 (EAAT3) show increased sensitivity to 
isoflurane-induced anesthesia, mediated by the hypothalamic sleep 
neural circuit [49]. Light stimulation activates orexinergic neurons 
in the BF-LC pathway, promoting emergence and motor recovery in 
rats [50,51]. Research suggests that isoflurane anesthesia primarily 
affects cortical rather than subcortical structures in mice, leading to 
diminished thalamus-cortex connections [32]. Connectivity between 
the solitary bundle nucleus and the ventral lateral or suspected nu-
cleus at the head of the medulla oblongata also decreases under iso-
flurane anesthesia [52]. Isoflurane influences memory by inhibiting 
interneurons within the cortical hippocampal circuit [53]. It also 
impacts neurons in the anterior border of the medial prefrontal lim-
bic and inferior limbic areas, affecting associative learning processes 
[54]. Additionally, isoflurane affects the activity of cortical limbic and 
reward-related areas, such as the basal nucleus and limbic thalamic 
nuclei, which play roles in sensory association processes, emotions, 
and learning and memory-related behaviors [55].

Ketamine: Ketamine, a general anesthetic administered intra-
venously, is chemically related to phencyclidine and has the formula 
C13H16ClNO HCl. It antagonizes NMDA receptors and non-competi-
tively inhibits norepinephrine transporter proteins. Additionally, ket-
amine upregulates AMPA receptors and activates μ opioid receptors, 
providing anesthetic, analgesic, amnesic, and sedative effects [56]. 
It also inhibits Na+ and Ca2+ channels and interacts with monoami-
nergic, cholinergic, muscarinic, and nicotinic receptors [57]. Distinct 
from other anesthetics, ketamine selectively inhibits the medial tha-
lamic nucleus, blocks reticular tract conduction in the spinal cord, 
and activates the limbic system, thereby inducing “dissociative an-
esthesia”, which is independent of its analgesic properties [58-60]. 
Ketamine’s blockage of NMDA receptors in cortical interneurons is 
more pronounced than in pyramidal neurons, resulting in the rela-
tive inhibition of the former and hyperactivity in glutamate-mediated 

pyramidal neurons. This leads to rigidity, shallow sedation, amnesia, 
and significant analgesia [61,62]. At higher doses, ketamine induces 
unconsciousness typical of general anesthesia [63]. First introduced 
in the 1960s as an anesthetic [64], ketamine has potential for psy-
chiatric dependence and is unique among intravenous anesthetics 
for its analgesic properties. Its clinical use is sometimes limited due 
to side effects like rapid heart rate, hypertension, and hallucinations 
[65]. However, its lower respiratory depression capability makes it a 
preferred choice in settings without reliable ventilatory support. Ket-
amine has been explored for treating mood disorders [66], addiction 
[67], schizophrenia [68], and for pain relief [69,70]. 

Under ketamine anesthesia, EEG characteristically shows a γ 
burst [71,72], a decrease in α power, and an increase in γ power. This γ 
power amplification is pronounced in anesthetized rats and monkeys 
[73]. Ketamine affects the thalamocortical network by altering senso-
rimotor rhythm amplitudes and interregional blood flow but does not 
inhibit the thalamus directly [74.,75]. It activates various emergence 
centers, such as the mesencephalon and brainstem [76], instead of 
the ventral lateral preoptic nucleus [77]. Ketamine enhances con-
nections between the prefrontal cortex and hippocampus, remodels 
cortico-marginal-striatal circuits, and alters overall brain functional 
connectivity [66]. It consistently elevates activity in the medial sub-
stantia nigra, ventral tegmental area, frontal cortex, and ventral stri-
atum, potentially improving depression scores in major depressive 
disorder [78,79] patients through its rapid and sustained effects on 
the midbrain’s limbic neural network. During ketamine administra-
tion, feedback connections in the frontoparietal network progressive-
ly weaken and become significantly inhibited post-loss of conscious-
ness [72,80]. Anesthesia studies in monkeys have revealed changes 
in brain activity regionally, with increases in the fractional amplitude 
of low and medium frequency fluctuations in various brain regions 
[81]. Resting-state functional MRI confirms acute changes in brain 
circuit intensity and connectivity under ketamine, notably disrupting 
the functional connectivity of the default mode, cognitive control, and 
medullary affective networks. Currently, conventional treatments for 
major depressive disorder are slow-acting and less effective with a 
higher recurrence rate [82,83]. Recently, ketamine has garnered at-
tention as a rapid-acting antidepressant but remains underexplored 
in anesthesia-induced loss of consciousness studies.

Propofol: Propofol, chemically known as 2,6-diisopropylphenol 
with the molecular formula C12H18O, is a widely used and exten-
sively studied short-acting intravenous anesthetic in clinical prac-
tice. It primarily suppresses neuronal activity by enhancing GABAA 
receptor-mediated inhibition in the cortex, thalamus, and brainstem 
[27,84-86]. Propofol facilitates the opening of chloride channels, in-
creasing inward chloride flow, and consequently hyperpolarizing 
postsynaptic membranes [87]. It is commonly used for the induction 
and maintenance of sedation and general anesthesia, especially in 
outpatient procedures. However, its administration can lead to side 
effects such as respiratory depression, apnea, hypotension, injection 
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pain, and allergies. Dosage of propofol is critical [88], a lower dos-
age may cause excitation instead of sedation, linked to the activation 
of AMP-dependent protein kinase (AMPK) [89] in neurons and LTS 
cell-mediated excitation of cortical interneurons [90-92]. Converse-
ly, a higher dosage can result in unconsciousness [93,94]. The EEG 
patterns under propofol anesthesia are characterized by frontal alpha 
oscillations (8 to 12 Hz), delta oscillations (1 to 4 Hz), and slow os-
cillations (0.1 to 1 Hz). Large amplitude slow oscillations, indicating 
prolonged neuronal silence, are induced to deepen unconsciousness 
[18]. α oscillations, synchronized between the thalamus and medial 
prefrontal cortex, can trigger coherent thalamocortical δ oscillations, 
which are critical for consciousness. 

The transition from sedation to unconsciousness might be at-
tributed to alterations in the GABAergic network across the cortex, 
thalamus, and brainstem, resulting in an inhibited brain state [93,94]. 
However, research by Li Ma, et al. indicates that this inhibition is not 
uniform across the brain. Disproportionate inhibition of functional 
connectivity in frontal and parietal regions can induce coherent os-
cillations and intensify certain frontoparietal interactions in the mo-
toneuron [95]. Similarly, Laura D Lewis, et al.’s intracranial cortical 
EEG recordings during propofol anesthesia revealed uneven local 
cortical dynamics, suggesting that some cortical areas under anesthe-
sia might be in a state of emergent inhibition while adjacent areas 
exhibit continuous activity [96]. This uneven activity is evident in the 
nucleus accumbens during anesthesia, where a significant increase in 
c-Fos expression in VLPO neurons is observed, leading to loss of con-
sciousness [76]. Stimulating the nucleus ambiguus (NAc) can prolong 
propofol-induced loss of consciousness by inhibiting functional con-
nectivity between NAc-dorsal raphe (DR) and NAc-cingulate cortex 
(CG) [97]. Additionally, propofol reduces the excitability of choliner-
gic neurons in the mouse basal forebrain via GABAA receptors, affect-
ing the basal forebrain’s critical role in sleep-wake regulation [98]. In 
terms of memory behavior effects, propofol’s sustained activation of 
GABAA-type receptors leads to long-term potentiation (LTP) injury in 
the CA1 region of the hippocampus, reducing cortical neuron density 
[99]. This decrease in excitatory input to cortical pyramidal neurons, 
along with reduced activity of pyramidal and cortical inhibitory inter-
neurons, has been linked to impaired cognitive and behavioral cor-
tical circuits in neonatal mice, resulting in cognitive and behavioral 
deficits [100].

Etomidate: Etomidate is a non-barbiturate intravenous anesthet-
ic, primarily mediating anesthesia by enhancing GABAA receptors 
[101]. It acts rapidly and minimally impacts the respiratory and car-
diovascular systems, making it particularly suitable for geriatric pa-
tients with cardiovascular and cerebrovascular diseases and an ideal 
induction agent for cardiac anesthesia [102]. However, etomidate’s 
inhibition of adrenal cortical endosteroid synthesis has sparked con-
siderable controversy. There is currently no consensus on whether 
its use should be limited to specific scenarios, especially in cases of 
infectious shock and critical care patients [103-105]. In a study by 

Zhang L, et al., EEG data from 20 patients who underwent etomi-
date-induced general anesthesia were analyzed. The findings sug-
gested that the neural circuit mechanisms inducing unconsciousness 
were associated with evoked δ-, θ-, α-, and β-wave oscillations, along 
with enhanced δ-wave coherence [106]. At present, detailed informa-
tion on the neural circuits involved in etomidate anesthesia remains 
temporarily unavailable.

Dexmedetomidine: Dexmedetomidine, an agonist of central and 
peripheral α2-adrenergic receptors (α2-AdRs), induces hyperpolar-
ization, decreases norepinephrine release, and produces sedative, 
anxiolytic, and analgesic effects. During sedation, spindle oscillations 
(12 to 16 Hz) in the EEG pattern are significantly induced, akin to 
those observed during general anesthesia with propofol18. Dexme-
detomidine acts on brainstem sleep circuits, binding to presynaptic 
α2-adrenergic receptors in the locus coeruleus (LC) [107] and me-
diating sedation that mimics NREM sleep [107,108]. Nelson LE, et al. 
demonstrated that dexmedetomidine-induced sedation could be re-
versed by impairing the LC or by injecting an α2-AdR inhibitor into 
the LC of rats [108]. They observed that activating α2-AdR in nodal 
papillae nuclei to inhibit the ventrolateral preoptic area (VLPO) sub-
sequently inhibited the tuberomammillary nucleus (TMN) via GABA 
release, similar to selective injections of anesthetics or GABA agonists 
into the nucleus. However, dexmedetomidine does not significantly 
alter cortical EEG frequencies, and subcortical function remains con-
nected in anesthetized mice, maintaining interaction between the 
cortex and thalamus [32,109]. Notably, dexmedetomidine does not 
reliably induce unconsciousness; its primary use is in sedation, par-
ticularly beneficial in “awake craniotomy” where patient communica-
tion is necessary [108]. It synergistically enhances the effects of other 
sedative and analgesic drugs, thus reducing their required dosages. 
Its clinical application extends to ICU sedation and as a supplement in 
intraoperative general anesthesia. Our findings are summarized be-
low. Firstly, the presence of neural connections does not always imply 
functionality.

The existence of structural connections does not guarantee func-
tional connectivity, which necessitates further exploration. Secondly, 
the current understanding of neural circuits in anesthesia is largely 
based on animal experiments, suggesting variability in neural cir-
cuits between humans and animals due to differences in nervous 
system development. Therefore, more reliable experimental models 
are needed for validation. Thirdly, variations in brain structure, syn-
aptogenesis, neuronal differentiation, neurochemical signaling, and 
myelination at different stages of cerebral development indicate that 
adult neural network systems cannot be directly applied to children’s 
brains of various ages [110,111]. Fourthly, no single brain region or 
mechanism has been definitively linked to consciousness, indicating 
that consciousness arises from complex functional interactions across 
different neural circuits and neurons in varying temporal and spatial 
contexts. Identifying where and when anesthesia targets or takes 
effect remains a challenging endeavor. It is also difficult to discern 
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common mechanisms among the diverse changes in unconsciousness 
induced by different anesthetics [112].

Conclusion
In conclusion, our bibliometric analysis of the literature on anes-

thesia and neural circuits reveals a growing interest in understand-
ing the intricate relationship between anesthetic agents and neural 
circuitry. Specifically, there is significant research focusing on the 
involvement of cortex-cortex and thalamus-cortex pathways with 
anesthetics such as sevoflurane, isoflurane, and propofol. Dexmede-
tomidine, primarily used for sedation, has been investigated for its 
effects on brainstem sleep circuits but does not reliably induce un-
consciousness. Ketamine, while garnering attention for its potential 
as a rapid-acting antidepressant, has limited research on its neural 
circuitry during anesthesia. Studies on the neural circuits related to 
etomidate are scarce and require further investigation. Overall, our 
analysis highlights a notable gap in research regarding the precise 
neural circuits involved in the mechanisms of general anesthesia. Fur-
ther exploration in this area is crucial for advancing our understand-
ing of anesthesia-induced unconsciousness and developing safer and 
more effective anesthetic agents and techniques.
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