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ABSTRACT

For piecewise constant objects, the images can be reconstructed with under-sampled measurements. The 
gradient image of a piecewise image is sparse. If a sparse solution is a desired solution, an l0-norm minimization 
method is effective to solve an under-determined system. However, the l0-norm is not differentiable, and it is 
not straightforward to minimize an l0-norm. This paper suggests a function that is like the l0-norm function, 
and we refer to this function as meta l0-norm. The subdifferential of the meta l0-norm has a simple explicit 
expression. Thus, it is straightforward to derive a gradient descent algorithm to enforce the sparseness in the 
solution. In fact, the proposed meta norm is a transition that varies between the TV-norm and the l0-norm. 
As an application, this paper uses the proposed meta l0-norm for few-view tomography. Computer simulation 
results indicate that the proposed meta l0-norm effectively guides the image reconstruction algorithm to a 
piecewise constant solution. It is not clear whether the TV-norm or the l0-norm is more effective in producing 
a sparse solution. Index Terms—Inverse problem, optimization, total-variation minimization, l0-norm 
minimization, few-view tomography, iterative algorithm, image reconstruction

Abbreviations: SSIM: Studies with Structure Similarity; PSNR: Peak Signal-to-Noise Ratio; SNR: Signal-to-
Noise Ratio; MLEM: Maximum-Likelihood Expectation-Maximization; POCS: Projections onto Convex Sets
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Introduction
COMPRESSED sensing is a technology to use under-sampled 

measurements for solving an inverse problem [1-4]. When the mea-
surements are insufficient, the imaging system is underdetermined, 
and the object to be imaged is not well defined. Extra information is 
required for a useful reconstructed image. For certain objects, extra 
information is available. The sparseness of an object is an important 
piece of information. An image array is said to be sparse if most of 
the array elements are zero. For example, the edge image of a piece-
wise constant image is sparse. Let us consider the following situation. 
The desired solution, X, of an inverse problem is sparse after a certain 
sparsifying transformation ψ , that is, ( )Xψ  is sparse. The sparseness 
is measured by the l0 norm, ‖∙‖0 . If X is a vector,

the total number of nonzero elements in 𝑋.               (1)

If X is a scalar, ‖𝑋‖0 is a binary number as

                              
 (2)

An under-determined inverse problem has infinitely many solu-
tions. A compressed sensing solution is a solution with a minimum 

( ) 0|| ||Xψ  value. 

Mathematically speaking, the l0 norm is not really a norm norev-
en a pseudo-norm, because, in general,

0 0|| || | | . || ||cX c X≠                              (3)

In this paper, we use the term ‘norm’ loosely. The difficulty of using 
the l0-norm is that the l0-norm is nondifferentiable. Many research-
ers have attempted to tackle the l0-norm minimization problem. The 
work in [5] converted the l0-norm minimization problem into an un-
constrained augment Lagrange problem. The work in [6] solved the 
l0-norm minimization problem by introducing auxiliary variables. The 
l0-norm minimization solution used in [7] involved a hard threshold-
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ing, linearization, and proximal points techniques. The l0-norm mini-
mization is usually achieved by solving some sub problems [8]. Due to 
the difficulty in minimizing the l0-norm, the total variation (TV) norm 
minimization, which is the l1-norm of the gradient, has been given 
more attention [9-11]. This is because the implementation of the l1-
norm optimization is much easier than the l0-norm optimization. The 
main purpose of this current paper is to present a simple way to im-
plement the l0-norm optimization.

Methods
The l0-Norm and Proposed Meta l0-Norm

In our two-dimensional (2D) image reconstruction applications, 
we choose the finite differences in the row and column directions as 
the sparsifying transformation ψ . Let the 2D image be X and its pix-
els be denoted as 𝑥𝑖,𝑗, where i is the row index and j is the column 
index. At each pixel, ( ),i jxψ  is a finite difference gradient, which is a 
2D vector

                            (4)

The optimization metric (i.e., the objective function) can be set up 
as the sum of the l0-norm of all pixels in the image as

                  (5)

One difficulty of minimizing (5) is that the l0-norm is not differ-
entiable and is not easy to optimize. One common method to mitigate 
the difficulty is to use the l1-norm approximation [9-13]. The famous 
total variation (TV) method is to use the l1-norm of the finite differ-
ence gradient to replace the l0-norm of the finite difference gradient. 
For a 2D image X, the isotropic TV norm is defined as

( )

( ) ( )

1, ,
1

, 1 ,

2 2

1, , , 1 ,

|| ||i j i j
iso

i j i j i j

i j i j i j i j
i j

x x
TV X

x x

x x x x

+

+

+ +

− 
= ∑∑  − 

= ∑∑ − + − ,                             (6)

and the anisotropic TV norm is defined as

( ) ( )1, , , 1 ,| | | |aniso i j i j i j i j
i j

TV X x x x x+ += ∑∑ − + − ,        (7)

This paper proposes an alternative ‘norm’ to replace the l0-norm. 
We refer to the proposed ‘norm’ as the meta l0-norm, which is defined 
for a scalar X as

 ,                             (8)

where 0 a< < ∞ is user-defined parameter. When 𝑋 = 0, ‖𝑋‖𝑚𝑒𝑡𝑎0 =  
‖𝑋‖0 =  0. When 𝑋 ≠ 0, ‖𝑋‖𝑚𝑒𝑡𝑎0 ≈ ‖𝑋‖0 =  1 if 𝑎 is chosen large enough.
Figure 1 illustrates the approximation of ‖𝑋‖0 by proposed ‖𝑋‖𝑚𝑒𝑡𝑎0 . 

Figure 1: (Blue) ‖𝑋‖𝑚𝑒𝑡𝑎0 with 𝑎 = 5; (Red) ‖𝑋‖0.

For a 2D vector 
1

2

x
X

x
 

=  
 we define the anisotropic meta l0-norm as

 ,           (9)

and define the isotropic meta l0-norm as

                            (10)

X
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For a 2D image X, we replace (5) by the anisotropic metric

( ) ( )1, , , 1 ,| | | |1 i j i j i j i ja x x x x
anisoMeta

i j
M X e + +− − + − = ∑∑ −  

,                       (11)

or the isotropic metric

( ) ( ) ( )2 2
1, , , 1 ,1 i j i j i j i ja x x x x

isoMeta
i j

M X e + +− − + − 
= ∑∑ − 

   .            (12)

The subdifferential exists for the proposed metric (11) as

( ) ( )

( ) ( )
( ) ( )
( ) ( )

1, , , 1 ,

, 1, 1, 1 1,
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,                    (13)

where the sign function in (13) is defined as

 ( )
1, 0

sgn 0, 0
1, 0

if x
x if x

if x

>
= =
− <                                 

(14)

The subdifferential given in (13) readily leads to a gradient de-
scent algorithm to minimize the metric given in (11). The subdiffer-
ential for (12) can be similarly obtained. 

Application: Few-View Tomography

Here we consider a 2D parallel-beam imaging system, where the 
image array was 256 × 256, the detector contained 256 bins, and the 
number of views over 180° was 30. The noiseless projection line in-
tegrals were generated analytically (without using pixels). A method 
based on ‘projections onto convex sets’ (POCS) was selected to recon-
struct the image. This method alternated between the maximum-like-
lihood expectation-maximization (MLEM) image reconstruction al-
gorithm and a gradient descent algorithm that minimized the metric 
𝑀𝑎𝑛𝑖𝑠𝑜𝑀𝑒𝑡𝑎(𝑋) or 𝑀𝑖𝑠𝑜𝑀𝑒𝑡𝑎(𝑋). There were 200 iterations used in the POCS 
algorithm. At each POCS iteration, there were 5000 iterations for the 
gradient descent algorithm. A flow chart of the algorithm is illustrated 
in Figure 2. In the computer simulations, the Shepp-Logan phantom 
was used [14]. In addition to the noiseless data set, a noisy data set 
was also generated with the zero-mean Gaussian noise added.

In Figure 2, the image reconstruction algorithm ① is the MLEM 
algorithm:

Figure 2: A flowchart of the algorithm used in computer simulations.

( )
( )

( )
1 ,

, ,,
, , , , , ,

k
k i j m

i j m ki j mm i j m i j i j m i j

pa
a a

xx x
+ = ∑

∑ ∑
,                    (15)

where 𝑝𝑚 is the mth projection, 𝑎𝑖,𝑗,𝑚 is the projection contribution 
from the pixel (i,j) to the projection bin m, and k is the iteration index. 
In fact, the user can choose any iterative image reconstruction algo-

rithm for algorithm ①. The gradient descent algorithm ② in Figure 
2 is given as

( ) ( ) ( )1

, ,
,

k k meta
i j i j

i j

M X
xx x η+ ∂

= −
∂

,                             (16)

where 𝜂 =  2 × 10−7 in our computer simulations, and ,( ) /anisoMeta i jM X x∂ ∂  
is defined by (13) or ,( ) /isoMeta i jM X x∂ ∂  . The number of iterations 

https://dx.doi.org/10.26717/BJSTR.2024.55.008665


Copyright@ :   Gengsheng L Zeng | Biomed J Sci & Tech Res |   BJSTR.MS.ID.008665. 46744

Volume 55- Issue 2 DOI: 10.26717/BJSTR.2024.55.008665

shown in Figure 2 is served as an example only. A TV constrained 
image reconstruction algorithm was also implemented for the com-
parison purposes. The TV implementation was in the same format as 
depicted in Figure 2, except that the gradient ,( ) /Meta i jM X x∂ ∂

 
was cal-

culated with the TV norm (6) or (7).

Results
The reconstructions via the MLEM, anisotropic/isotropic TV, and 

the proposed anisotropic/isotropic meta l0 method are shown in Fig-
ures 3 & 4, respectively, for the noiseless and noisy data. Tables 1-4 
show the quantitative comparison studies with structure similarity 

(SSIM), peak signal-to-noise ratio (PSNR), and signal-to-noise ratio 
(SNR). When the parameter ‘a’ is small, the proposed meta l0-norms 
behave like TV norms. On the other hand, when the parameter ‘a’ is 
large, the meta l0-norms behave like the l0-norms. Thus, the proposed 
meta l0-norm are snapshots of the morphing from the TV norm to the 
l0-norm for different ‘a’ value. When a =  10000, the numerical val-
ues of the exponential function become underflow. The constraints 
are not effective and are ignored. It is observed that the l0-norm give 
better SSIM results. However, the TV norms give better PSNR and SNR 
results. Therefore, we cannot conclude whether the TV norms or the 
l0-norms are the better choices for sparse solutions.

Figure 3: Reconstructions with noiseless data.
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Figure 4: Reconstructions with noisy data.
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Table 1: Comparison studies with noiseless data (anisotropic).
Method SSIM PSNR SNR

Ideal case 1 ∞ ∞

MLEM 0.8771 32.8887 16.5828

anisoMeta a=10000 0.8773 32.8935 16.5876

anisoMeta a=100 0.9561 34.997 18.6911

anisoMeta a=1 0.953 35.9851 19.6792

anisoMeta a=0.01 0.9534 36.405 20.099

anisoMeta a=0.0001 0.9534 36.4076 20.1016

anisoTV 0.9475 36.9199 20.6139

Table 2: Comparison studies with noiseless data (isotropic).
Method SSIM PSNR SNR

Ideal case 1 ∞ ∞

MLEM 0.8771 32.8887 16.5828

isoMeta a=10000 0.8775 32.8967 16.5908

isoMeta a =100 0.9557 34.9854 18.6795

isoMeta a=1 0.9509 36.7247 20.4187

isoMeta a=0.01 0.9514 37.4011 21.0951

isoMeta a=0.0001 0.9514 37.4094 21.1035

isoTV 0.9514 37.4095 21.1035

Table 3: Comparison studies with noisy data (anisotropic).
Method SSIM PSNR SNR

Ideal case 1 ∞ ∞

MLEM w/ noise 0.6522 28.1125 11.8066

anisoMeta w/ noise, a=10000 0.6442 27.889 11.583

anisoMeta w/ noise, a=100 0.6932 26.8645 10.5586

anisoMeta w/ noise, a=1 0.8642 29.9569 13.6509

anisoMeta w/ noise, a=0.01 0.8694 30.7124 14.4064

anisoMeta w/ noise, a=0.0001 0.8691 30.6697 14.3638

anisoTV w/ noise 0.8663 30.7298 14.4238

Table 4: Comparison studies with noisy data (isotropic).
Method SSIM PSNR SNR

Ideal case 1 ∞ ∞

MLEM w/ noise 0.6522 28.1125 11.8066

isoMeta w/ noise, a=10000 0.6467 27.9845 11.6785

isoMeta w/ noise, a=100 0.686 26.9188 10.6128

isoMeta w/ noise, a=1 0.8511 29.8379 13.5319

isoMeta w/ noise, a=0.01 0.8605 30.1981 13.8921

isoMeta w/ noise, a=0.0001 0.8638 30.3116 14.0056

isoTV w/ noise 0.8625 30.3089 14.0029

Discussion and Conclusions
Simple meta l0-norms are suggested in this paper to replace the 

l0-norm in searching a sparse solution for an inverse problem with 
under-sampled data. Thess meta norms have a user defined param-
eter ‘a’. The meta l0-norms behave like the l0-norm when ‘a’ is large. 
The most significant advantage of the meta l0-norms is that it is sub-
differentiable. Therefore, it is straightforward to derive a gradient 
descent algorithm to minimize the meta l0-norms. Computer simula-
tions in this paper show that the meta l0-norms are effective in pro-
ducing a piecewise solution. The meta norms are snapshots between 
the TV norms and the l0-norms. The choice of a better norm is task 
dependent. The l0-norms are not always preferred. We must point out 
that the l0-norm minimization problem is far from being solved. The 
l0-norm minimization problem is NP-hard. The gradient descent al-
gorithm to minimize the meta l0-norms is merely a greedy approach. 
The l0-norm minimization problem has multiple minima. Any gradi-
ent based methods can only find a local minimum.
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