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ABSTRACT

The application of artificial intelligence (AI), including Deep Learning (DL) algorithms, is an emerging 
ground in the healthcare industry. Rheumatoid arthritis (RA) is a disease that is at the forefront of digital 
healthcare. The traditional manual approach is time consuming, tedious, and highly subjective. Multiple 
research paper has demonstrated promising results for the classification of rheumatoid arthritis using the 
fingers and toes, but little research has shown progress at classifying rheumatoid arthritis using the wrist 
X-Ray images. The objective of this paper is to develop an algorithm for automatically detecting the wrist 
joints of rheumatoid arthritis patients using X-Ray images and computer vision technology. In this study, 
>95% accuracy is obtained for the wrist joint detection. This paper serves as a proof of concept for wrist 
joint identification. Our initial experiments in wrist joint detection have shown significant improvements 
to this area of research, bringing automatic wrist joint detection closer than ever before towards a clinical 
support system. Our automated algorithm also provides the foundation for the classification of RA using 
wrist joint X-Ray images. 
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Introduction
Problem 

There is no known method to automatically detect wrist joints 
using X-Ray images for the classification of rheumatoid arthritis pa-
tients.

What is Already Known 

Multiple research papers have demonstrated promising results 
for the classification of rheumatoid arthritis using finger and toes 
X-Ray images, but little research has shown progress for the wrist 
joint identification. 

Our Contributions to Wrist-Joint X-Ray Image Detection 

The objective of this study was to construct a deep learning al-
gorithm that provides automatic detection of the wrist joints using 
the state of the art computer vision technology, YOLOv7. In this pre-
liminary study, >95% accuracy was obtained for wrist joint detection. 
This paper serves as a proof of concept for wrist joint identification. 
It also provides the foundation for the classification of wrist joints for 
rheumatoid arthritis. Rheumatoid arthritis (RA) is a chronic autoim-
mune disease that primarily affects the joints. The global RA preva-
lence estimate was 0.46% in 2015 [1], and this number is expected to 
increase. Its symbolic symptoms include inflammation in the synovial 
membrane (the lining of the joint), which can cause pain, stiffness, 
and swelling in the affected area. Over time, RA can lead to damage 
to the joints characterized by joint space narrowing, erosions in sub-
chondral bone, and joint deformity [2], which may eventually result 
in irreversible abnormality and loss of function. Patients at early 
stage of RA often develop disease-related or therapy-induced osteo-
penia and joint space narrowing caused by the dissolution of carti-
lage tissue. These morphological alterations can be detected by CAD 
techniques before further deterioration [3]. Early detection of RA is 
crucial so that doctors could intervene in the deterioration progress 
with drug treatments. Several attempts have been made to develop 
software and algorithms to automate this process. Computerized 
measurement provides quantitative data on JSW that can be more re-
producible than data obtained with traditional scoring systems [4-6]. 
Automated detection has been shown to be more sensitive to changes 
than SvdH scores [7]. Jin et al. illustrated that eye diseases could be 
related to RA development in patients above age of 50 [8]. 

Initial experiments involving machine learning algorithms were 
first attempted [9]. O’Neil et al. designed a regression model to give 
prediction whether a patient is at high risk of developing RA [10]. 
Deep learning is a type of AI that proves to be powerful in healthcare 
industry, such as medical imaging and text from electronic health re-
cords [11]. Deep learning-based models are used to conquer a broad 
range of missions such in rheumatology such as testing for antinucle-

ar antibodies [12], interpretation of synovial ultrasounds [13], and 
predicting diagnoses from an EHR [14]. A study found that building 
accurate models to forecast complex disease outcomes using elec-
tronic health record data is possible [15]. More recently, convolution-
al neural networks have become the dominant method for medical 
image classification [16,17], medical image segmentation [18]. An 
efficient CNN architecture (GRNN) achieves high accuracy for hand 
X-ray classification [19]. An efficient CNN ResNet-Dwise50 model was 
designed for the overall scoring of RA in hand X-rays by introducing 
depth wise separable convolution block and inverted residual block 
[20]. Another common approach involves a two-step approach to 
detect finger joint destruction [21,22]. A customed model using SIFT 
and CNN to extract features outperformed traditional ML classifiers 
[23]. YOLOv4 and VGG16 were combined for the assessment of RA, 
osteoarthritis and achieved 90.7% accuracy [24]. Additional efforts 
constructed a customized CNN model with batch normalization, 
ReLU, and pre-trained VGG 16 model but failed to improve the accu-
racy (67.5%) [25]. The main contributions of this project, in which 
Rheumatoid Arthritis classification was performed on radiographic 
pictures at wrist area using novel computer vision algorithms, are 
shown as below. 

• A dataset containing 367 pairs of hands was obtained from 
CLEAR repository and TETRAD study. The X-ray images provide 
an accurate depiction of various stages of patients in real-life sce-
narios. 

• To understand the distribution of joint space narrowing and 
bones erosion scores at all wrist joints/bones, data exploration 
was performed with the given score tables. 

• To resolve the issue of imbalance in various classes of scores, 
3 joints and 3 bones are selected for further study. The selected 
bones have a more balanced distribution of scores and are typical 
targets of inflammation.

• In order to improve the interpretability of given images, 
several image pre-processing methods were applied in sequence, 
including cropping, normalization, resizing, padding, contrast in-
crement. 

• Manual labelling was conducted to provide the ground truth 
to the deep learning models. The joints and bones were labelled 
separately in a free, open-source software. Overall, 6 classes of 
bounding boxes were drawn on each wrist image. 

• YOLOv7 was chosen as the object detection algorithm and 
the training results were compared. Metrics including mean aver-
age precision (mAP), precision, recall, F1-score were used to tune 
parameters of the model. Different sizes of bounding boxes were 
also tested, but their results showed negligible difference. 
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• With the newly publish YOLOv7, modern computer vision 
has proven to be capable of detecting wrist joints and bones with 
tremendously high accuracy. In this ongoing research project, the 
object detection result provides a solid foundation for the future 
scoring models. 

Materials and Methods
Dataset

The radiographic image dataset used in this project contains 367 
pairs of X-ray images of both left hand and right hand of patients, in-
cluding the wrist area. High-resolution radiographic images of both 
hands were presented in sequence as JPEG images. The side of hands 
shown in the picture was indicated in the file name as either LH (Left 
Hand) or RH (Right Hand). Two separate CSV files were provided with 
overall erosion scores, individual erosion score for each joint, overall 
narrowing scores, and individual narrowing score for each joint. The 

scores were obtained through Sharp/van der Heijde method by certi-
fied and recognized physicians.

Data Exploration

Due to the limit of computational resources, we decide to only fo-
cus on joints that are comparatively equally distributed. We selected 
‘mna’, ‘capnlun’, ‘radcar’, ‘mul’, ‘nav’, and ‘lunate’. We first categorized 
the scores into 0,1 and the rest. The assumption was samples with 
score 1 have only minor symptoms. Those at the initial stages of RA 
do not require too much in house treatment. We indicated zeros and 
ones as ‘healthy’ and the rest as ‘unhealthy’ for ease of representation. 
The distribution is roughly 2:1 for joints which is a reasonable range. 
The distribution of bones is significantly more unequal. We also tried 
to isolate zeros from the rest and derived the graphs in (Figures 1 & 
2) The distribution of this categorization is more likely to give satis-
factory results. 

Figure 1: Distribution of 0 and remaining scores of selected joints.
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Cropping

The raw X-ray images from the dataset were first cropped to focus 
only on the wrist area, which is the region of interest. For the conve-
nience of the following steps, we removed the redundant parts of im-

ages by a fixed proportion. After conducting trials and manual obser-
vations, we decided to remove the upper 3/7 of all images as shown 
in Figure 3. Our aim was to eliminate most of the fingers and palms 
while still ensuring that all the wrist bones remained clearly visible. 

Figure 2: Distribution of 0 and remaining scores of selected bones.

Normalization

Normalization can speed up the convergence rate during training 
by helping to find the optimal solution more quickly. This is because 
normalization reduces the range of the input data, which can help the 
optimizer take larger steps towards the minimum. After normaliza-
tion, the input features have similar scales and distributions (0-1), 
which can improve the performance of the model during training.

Resizing and Padding

The cropped images were resized to a dimension of 1400 * 760. 
Firstly, we obtained the minimum width and length of all the images, 
and then we multiplied the exact pixel numbers by an arbitrary num-
ber to derive reasonable integer pixel numbers of 1400 and 760. We 
enlarged the images proportionally by a fixed number to make the la-
belling process easier. Uniform height and width also ensure that the 
joint detection model can identify areas of interest within a smaller 

range, thus increasing the success rate. To maintain the original as-
pect ratio for each image, black pixels were added to areas where nec-
essary. For each image, we compared its height ratio (1400 / height) 
and width ratio (760 / width). We rescaled the image according to the 
smaller ratio while keeping the original aspect ratio. We calculated 
the amount of padding required on all four sides so that 1400 and 760 
could be achieved. This ensures that the objects remain centered after 
resizing. Black pixels were used to fit the grayscale background color.

Contrast Increment

Contrast Limited Adaptive Histogram Equalization (CLAHE) is a 
proven technique for enhancing the contrast of an image. It extends 
the traditional Histogram Equalization method by spreading the 
intensity values of an image evenly across its entire histogram. We 
applied CLAHE to all the images with a clip limit of 2.0 and a grid 
size of (8,8). This procedure greatly improved the contrast and made 
the bones more visible. It also helped alleviate the problem of some 
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pictures being overexposed or underexposed. The visual features 
are more likely to be captured by the model, thus easing the learning 
process of joint identification. CLAHE also achieved noise removal. As 

shown in Figure 3, the image is much clearer after the contrast is in-
creased.

Figure 3: Randomly selected image for comparison before and after CLAHE.

Joint Segmentation (YOLO)

Two separate models were trained for joints and bones, respec-
tively. In the training process, we first download the weight document 
from the YOLOv7 official GitHub repository, which was pre-trained on 
the Common Objects in Context (COCO) dataset. This is the starting 
weight for our training process. The joints and bones models were 
trained independently of each other. Since the number of classes is the 
same for each model (Capnlun, Mna, Radcar for joints, and mul, nav, 
lunate for bones), the same set of parameters could be applied as fol-
lows: epochs = 300, batch-size = 2, img-size = 1400, 760, device = ‘0’, 
workers = 1. The final epoch number was determined after multiple 
failed attempts at 80, 100, and 200 epochs. The batch size and num-
ber of workers were kept low since increasing these values exceed-
ed the maximum memory of the GPU. However, when training one 
model for each joint, 200 epochs were sufficient to generate bounding 
boxes independently. Since the three classes of labels were exported 
together, we had to extract only one line of label when training one 
model for one joint. Additionally, YOLOv7 only recognizes class labels 

that start from 0. Therefore, when training an isolated model to detect 
Mna joints, we first had to extract the lines of label that began with 
class label 1 (Mna is the second class) and then convert all the 1s to 0s.

Results
Joints Detection Model Testing Result

The confusion matrix in Figure 4 below shows the accuracy of 
the YOLOv7 wrist detection results, with each box indicating a 100% 
accuracy for the joint location. For the test Intersection Over Union 
(IoU) threshold, we set it to the default value of 0.65. As long as the 
predicted joint area has an intersection of >=65% with the manually 
labelled area, it is classified as detected. All joints have an accuracy of 
>=95%, with Capnlun being the lowest, which could be due to differ-
ences in the extent of overlap. The F1-score reaches its highest value 
at a confidence level slightly over 0.6 and then continues to drop. To 
further improve the detection accuracy of a specific joint, we could 
train separate models for each joint and tune the parameters inde-
pendently.
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Figure 4: From top to bottom, left to right: Confusion matrix result for YOLOv7 detection result of joints, F1-score curve, P-curve (Precision), 
PR-curve (Precision vs. Recall), R-curve (Recall).

Discussion
Potential Impacts

This study provides proof of the validity of applying YOLOv7 to 
detect wrist joints. To our knowledge, no algorithms have been able 

to automatically classify RA in the wrist area thus far. While classify-
ing RA in fingers and toes has been proven to be reliable, progress in 
extending this concept to the wrists has been slow. This is primarily 
due to the overlapping of carpal bones, which makes wrist joints sig-
nificantly fuzzier to observe. Our study results provide solid evidence 
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that the most advanced computer vision technology can accurately 
detect wrist joints, which makes an automatic classification algorithm 
possible. A quick wrist joint detection algorithm will speed up the 
process for wrist joint scoring and the classification of RA. Even if the 
final diagnosis must be authorized by a clinician, automated algorith-
mic wrist detection is valuable in the health care digital transforma-
tion and can help clinicians to understand the severity of the RA and 
prioritise patients with more serious symptoms. A scientific, system-
atic approach to wrist joint detection and classification also reduces 
subjectivity, as even experienced clinicians can have conflicting opin-
ions. Prior research has also indicated that clinicians can be negligent 
in monitoring the RA progress. A categorical score is often vulnerable 
to minor developments in symptoms, which can be effectively cap-
tured using automated algorithms.

Future Work

Unfortunately, due to time constraints, we were only able to com-
plete the wrist joint detection. The advancements in object detection 
algorithms have given us the opportunity to explore a new frontier 
in detecting wrist joints for the classification of rheumatoid arthri-
tis. Initial experiments in wrist joint detection have shown signifi-
cant improvements, bringing automatic detection closer than ever 
before. We will continue to build on existing experimental results 
and develop algorithms that can predict scores in targeted areas. Our 
first goal is to train the model to differentiate healthy joints from un-
healthy ones. We define healthy joints as those with a score of 0, and 
unhealthy ones as those with a score greater than 0. As shown in the 
data exploration steps, the distribution of healthy vs. unhealthy joints 
is fairly equal and less prone to underfitting. Once we achieve optimal 
results, we will build on this foundation and begin training models to 
make precise predictions on individual scores. One major difficulty 
we foresee is the imbalance in the distribution of scores. Among all 
the joints, approximately 80% are healthy, and in some cases, the pro-
portion of healthy joints can be as high as 85% (cmc3, cmc4, cmc5, 
radius, ulna). The lack of unhealthy joint examples makes it difficult to 
produce accurate predictions. One proposal is to use techniques such 
as oversampling (randomly increasing samples in minority classes), 
under-sampling (randomly decreasing the number of samples in ma-
jority classes during training), and ordinal class encoding (making 
classes with lower number labels subsets of higher order classes).
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