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ABSTRACT

Silica nanoparticles (SiNPs) are widely utilized in various industries, such as food, synthetic processes, 
medical diagnosis and drug delivery, owing to their adjustable particle size, extensive surface area and 
excellent biocompatibility. Numerous studies have explored the biomedical applications of SiNPs, including 
the customization of their surfaces and structures to target different types of cancers and facilitate disease 
diagnosis. This mini review encompasses recent research on the biomedical applications of SiNPs, 
incorporating fundamental discoveries and ongoing exploratory advancements of their research, and 
particularly their implementation in drug delivery systems for the diagnosis and treatment of various 
diseases within the human body, holding potential for practical developments in the future.
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Introduction
Silica, also known as silicon dioxide (SiO2), is the most abundant 

compound found on the Earth’s crust as silicate minerals [1]. The 
manufacturing of silica nanoparticles (SiNPs) has experienced signif-
icant growth, establishing them as the second largest nanomaterial 
produced globally [2]. SiNPs, as an inorganic material, possess uni-
form pore size, controllable particle size, large surface area and sur-
face that can be easily modified, due to the presence of Si-OH bonds. 
Additionally, they exhibit excellent biocompatibility [3]. These char-
acteristics make the inorganic silica skeleton more stable in the face 
of temperature fluctuations, organic solvents and acidic conditions 
compared to traditional drug delivery systems [4]. This mini-review 
article provides an overview of recent research advancements in the 
biomedical utilization of SiNPs, specifically focusing on their role as 

carriers for drugs and auxiliary reagents in diagnostics. The applica-
tions of SiNPs as drug carriers are examined within various systems 
of the human body. Furthermore, the present mini review explores 
the utilization of SiNPs in medical diagnostics, highlighting their dis-
tinct functions. 

Biomedical Applications of Silica Nanoparticles
Drug Delivery and Therapy 

Respiratory ailments such as lung cancer, acute lung injury (ALI), 
pneumonia and viral infections are among the primary respiratory 
diseases [5]. SiNPs have been explored as potential drug carriers for 
respiratory treatment. Mesoporous silica nanoparticles (M-SiNPs) 
have been utilized in the creation of an aerosol possessing a water 
basis, in order to facilitate the delivery of medication through inha-
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lation [6]. In a mouse model of airway inflammation [7], M-SiNPs 
loaded with dexamethasone with PEG-PEI groups demonstrated the 
potential for drug transfer via inhalation. Researchers [8] have de-
veloped versatile and biocompatible drug carriers by incorporating 
avidin-functionalized M-SiNPs for lung-specific drug delivery. Meso-
porous SiNPs loaded siRNA has been also developed [9] to facilitate 
targeted transportation to alveolar macrophages. In the case of ALI 
resulting from failure of mitochondria to function normally, (Wang, 
et al. [10]) synthesized Se@SiNPs with enhanced porosity, possessing 
antioxidant properties that effectively targeted mitochondria. Among 
various types of lung cancers, non-small cell lung cancer (NSCLC) 
stands out as the most prevalent, characterized by a significantly low 
5-year survival rate of only 15% [11]. To address this, M-SiNPs loaded 
with myricetin and conjugated with siRNA and folic acid were em-
ployed to target lung cancer cells, effectively inhibiting tumor growth 
both in vivo and in vitro (Zhou, et al. [11,12]) reported on the forma-
tion of hollow mesoporous silica nanoparticles loaded with erlotinib 
that presented the ability to form a gel at body’s temperature, en-
abling a sustained drug release for topical therapy of NSCLC. 

For damaging lung cancer cell DNA, drugs against cancer, such as 
doxorubicin and cyclosporin, were encapsulated within photolumi-
nescent GQDs@M-SiNPs [13]. Additionally, core–shell SiNPs (< 8 nm), 
were conjugated with gefitinib–dipeptide drug linkers by (Madajew-
ski, et al. [14]) as carriers for drugs characterized by small molecules, 
leading to improved drug dosage and effectiveness during the reduc-
tion of dose-limiting toxicity. García-Fernández and co-researchers 
[15] showcased the potential of gated-mesoporous silica nanopar-
ticles (MSNs) as a promising method for delivering glucocorticoids 
directly to inflamed lungs in ALI conditions. By utilizing the combined 
passive and active targeting capabilities offered by engineered MSNs, 
this approach enables precise and targeted drug release while min-
imizing unwanted side effects. These findings hold promise for the 
treatment of various severe respiratory conditions such as Chronic 
Pulmonary Obstructive Disease (COPD), asthma, pulmonary fibro-
sis, respiratory infectious diseases, and COVID-19, where lung injury 
plays a crucial role. SiNPs with a size >7 nm predominantly accumu-
late in the liver, as liver cells have mechanisms to eliminate foreign 
substances through enzymatic breakdown or excretion into the bile. 
Engineered SiNPs of sizes equal to10 nm, as well as 100 nm, have 
been proved to act as safe carriers for drug and gene delivery [16].

Liver diseases encompass conditions, such as liver cancer, fat-
ty liver, liver cirrhosis and liver fibrosis. M-SiNPs loaded with miR-
33 antagomirs have been synthesized for specifically targeting liver 
tissue and addressing lipid metabolic disorders [17], thus resulting 
in approximately fivefold increased uptake of miR-33 antagomirs by 
hepatocytes. Hollow M-SiNPs encapsulating ammonia borane exhib-
ited sustained release in an acidic environment such as the stomach, 
leading to indirect reduction of liver fat content and direct modula-
tion of hepatic lipid metabolism for the treatment of fatty liver dis-

ease [18]. Extensive research has been conducted on SiNPs-based 
delivery systems for liver cancer, which is considered the riskiest and 
most life-threatening among liver diseases. Novel approaches include 
the development of Janus gold M-SiNPs functionalized with folic acid 
for targeted chemo-radiotherapy using prodrugs like tirapazamine 
or berberine (Lv, et al. [19,20]) employed covalent attachment of co-
glycyrrhetinic acid to M-SiNPs as a drug loading platform specifically 
targeting cancer cells (Zhang, et al. [21]). designed SiNPs coated with 
polyamidoamine-aptamer for dual-controlled release of CRISPR/
Cas9 gene therapy and sorafenib drug, enabling accurate gene editing 
and tumor growth suppression. SiNPs responsive to high glutathione 
levels in tumor tissue have also been developed. In their study, (Wong, 
et al. [22]) developed a versatile nanoplatform by combining a thi-
ol-activatable photosensitizer based on ZnPc and a doxorubicin (Dox) 
release system triggered by singlet oxygen within mesoporous silica 
nanoparticles (MSNs).

This nano-delivery system, which responds to multiple stimuli, 
offers valuable insights for the advancement of MSN-based drug de-
livery systems with enhanced control over drug release. Additionally, 
a novel drug delivery system was developed to enhance the effective-
ness of paclitaxel (PTX) in liver cancer therapy. This system involved 
synthesizing a thiol-terminated polyethylene glycol (PEG)-PTX conju-
gate and utilizing it to develop a promising drug delivery system with 
thiol-functionalized SiNPs with high potential for clinical use towards 
cancer treatment [23]. When it comes to the gastrointestinal tract, 
SiNPs offer potential solutions to overcome various barriers such as 
the diverse pH environment and the mucosal layer [24], enabling tar-
geted drug discharge at specific locations. Gastrointestinal disorders 
primarily affect the intestines and encompass conditions like colitis, 
microbial imbalances, and colon cancer. By incorporating multiple 
gating mechanisms, M-SiNPs were designed to respond to different 
stimuli, and the use of hydrolyzed starch-capped M-SiNPs triggered 
by pancreatin proved to be a suitable drug delivery system with min-
imal side effects [25].

To mitigate drug release in the gastric environment which is acid-
ic, Juere and co-researchers [26] combined M-SiNPs with a pH-re-
sponsive protein called succinylated β-lactoglobulin (Gao, et al. [27]). 
modified SiNPs using deoxycholic acid and coated their surfaces with 
sulfobetaine 12, for effectively preventing lysosomal entry and en-
hancing drug absorption throughout the intestinal segments. In their 
study, (Nguyen. et al. [28]) demonstrated that by applying SPL poly-
mer to cargo-loaded-mesoporous silica nanoparticles, the release of 
drugs could be controlled in response to the pH conditions mimicking 
the colon. Moreover, the coated MSNs exhibited superior delivery of 
drugs into RAW 264.7 macrophages and LS 174T cells, compared to 
mesoporous silica nanoparticles without the coating. These findings 
present promising prospects for utilizing SPL-coated nanoparticles 
in the targeted delivery of drugs, especially those with limited ability 
to permeate cell membranes, to macrophages and colorectal cancer 
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cells, leading potentially to enhanced treatment approaches for in-
flammatory bowel disease (IBD) and colorectal cancer. Furthermore, 
Cheng and co-researchers [29], proposed an innovative approach for 
delivering drugs, involving the self-assembly of Trp-CS, previously 
complexed with CB[8] and Azo-HA on the surface of M-SiNPs. This 
system offered a combined strategy for targeting the gut microbiota 
in the treatment of IBD. Moreover, a novel silica-based redox nanocar-
rier loaded with a hydrophobic anti-inflammatory drug (silymarin) 
exhibited anti-inflammatory effects through reactive oxygen species 
(ROS) scavenging [30]. 

Cardiovascular diseases, being the leading factor of global mortal-
ity, encompass conditions, such as myocardial ischemia-reperfusion 
injury, myocardial infarction and heart failure [31]. Mesenchymal 
stem cells have emerged as a promising therapeutic approach for 
heart diseases because of their ability to engage endogenous stem 
cells and release paracrine factors that enhance cell proliferation 
[32]. Leveraging this characteristic, Chen et al. synthesized a super-
paramagnetic mesocellular foam SiO2@Fe3O4 nanoparticle using an 
in-situ growth approach. The incorporation of superparamagnetic 
iron oxide (SPIO) improved the colloidal stability, zeta-potential, 
magnetization and sustained release behavior for insulin-like growth 
factor (IGF) of the nanoparticles [32]. The therapeutic effects of stem 
cells are predominantly mediated by the secretion of exosomes, 
which play a crucial role in angiogenesis and have potential for myo-
cardial infarction treatment. However, the practical application of 
exosomes is limited by their reduced yield and complex purification 
procedure [33]. To overcome these challenges, Yao et al. a developed 
a novel delivery system for miRNA, utilizing a self-assembled nano-
complex that mimics exosomes and is camouflaged with a stem cell 
membrane. This nanocomplex, based on mesoporous silica, exhibited 
an increased capacity for miRNA and provided effective protection for 
miRNA in biological fluids [34].

M-SiNPs have been utilized to enhance the therapeutic efficacy as 
a therapeutic approach for myocardial ischemia and inflammation by 
improving the availability of curcumin, leading to a cardio-protective 
effect [35]. In the case of chronic heart failure, which is characterized 
by elevated levels of reactive oxygen species in the heart, a diagnos-
tic molecule (FL2) capable of sensing hydrogen peroxide (H2O2) was 
incorporated onto captopril-loaded M-SiNPs to enable targeted drug 
delivery [36]. Endothelial cell dysfunction is closely associated with 
cardiovascular diseases (Farooq, et al. [37]). investigated the appli-
cation of titania coating on a vascular function model to enhance the 
compatibility and controlled release of sodium nitroprusside (SNP) 
loaded into mesoporous silica nanoparticles (MSN). They proposed 
that the utilization of titania-coated MSNs for delivering drugs to 
the blood vessels could be a promising approach for effective clini-
cal treatment of cardiovascular disorders. Additionally, also in 2018, 
Tsao and co-researchers indicated that the internalization of PLGA 
[poly(DL-lactide-co-glycolide)]-pSi (porous silica nanoparticles) 

within neonatal cardiac cells can trigger apoptotic signaling effects 
and facilitate the development of new blood vessels in cardiomyocytes 
[38]. Additionally, (Pikwong, et al. [39]) presented a novel approach 
by developing GSNPs (Graphene Oxide-Based Silica Nanoparticles) to 
encapsulate rhSLPI (recombinant human Secretory Leukocyte Prote-
ase Inhibitor), which demonstrated no cardiac cell toxicity and effec-
tively reduced cardiac cell death and injury in an in vitro simulated 
ischemia/reperfusion (sI/R) model. These findings offer valuable 
insights for future investigations in pre-clinical animal models, with 
potential implications for the treatment of ischemic heart disease. 
(Li, et al. [40]) successfully prepared mesoporous silica nanoparticles 
(MSNs) conjugated with CD11b antibody and loaded with NGR1. 

These MSN-NGR1-CD11b antibody nanoparticles exhibited en-
hanced targeting of NGR1 to the site of myocardial infarction (MI) 
upon administration. NGR1 effectively protected H9C2 cells and pri-
mary cardiomyocytes from oxidative stress injury induced by H2O2 

and OGD. Moreover, the MSN-NGR1-CD11b antibody nanoparticles 
mitigated localized inflammation and stimulated angiogenesis in the 
damaged myocardium, resulting in enhanced cardiac function after 
MI. These effects were achieved by enhancing the activation of AKT 
and MAPK signaling pathways, as well as the nuclear translocation of 
YAP. The aforementioned study introduced a novel approach for myo-
cardial-targeted drug delivery using MSNs, and offers new research 
avenues for exploring other biomaterials with myocardium-targeting 
capabilities. According to (Wang, et al. [41]). Quercetin’s therapeutic 
effectiveness through oral administration appears to be limited in 
achieving the desired therapeutic concentration in cardiac tissues. 
This highlights the need for improved formulations that can provide 
sustained release, offering advantages such as extended quercetin re-
lease to the cardiac region and reducing the frequency of injections 
required. In this study, we have developed PLGA-coated superpara-
magnetic nano-silica as a means to control drug release behavior 
from the nanobiocarriers. The SiN@QC-PLGA nanobiocomposite 
demonstrates enhanced properties that closely resemble those of 
native myocardium, allowing for cell activation, attachment, prolifer-
ation, and expression of heart proteins. Consequently, this type of an-
tioxidant quercetin delivery system holds potential for use in the pre-
vention of atherosclerosis and other similar cardiovascular diseases.

Medical Diagnosis

Silica nanoparticles have emerged as potent carriers for drug 
delivery and imaging contrast agents [42], offering valuable insights 
into disease state and progression. Extensive research has focused 
on functionalized fluorescent SiNPs for imaging applications. For 
instance, fluorescently-labeled mesoporous silica nanoparticles that 
specifically target polyps in the colon could function as contrast 
agents for endoscopic imaging, aiming to facilitate the early detection 
of colorectal polyps and cancer [43]. Fluorescent M-SiNPs with em-
bedded PEGylated MoS2 have been also effectively synthesized using 
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a simple method, resulting in stable nanoparticles. The nanoparticles 
exhibited remarkable targeted fluorescent bioimaging capabilities 
and demonstrated an effective photothermal effect against MDA-
MB-231 cancer cells [44]. Also, fluorescent silica nanoparticles with 
specific functionalization were developed and prepared to exclusive-
ly target cancer cells for bioimaging assessment. The surface of the 
nanoparticles was additionally modified with a 2000 Da PEG layer 
and folic acid to ensure excellent water stability and improve the se-
lectivity towards cancer cells, respectively [45]. During cancer cell 
metastasis, tumor cells interact with bone components, including in-
organic minerals, which may lead to bone mineralization (Chiou et al. 
[46]). presented the advancement of a cell labeling method utilizing 
fluorescent SiNPs. This technique enabled the simultaneous imaging 
of cells, bone marrow and mineralized matrix for both in vitro and 
in vivo investigations. (Estevão, et al. [47]) successfully prepared and 
utilized hybrid nanoparticles consisting of Ir complexes incorporated 
into mesoporous silica nanoparticles (MCM41-COOH) for the purpose 
of photodynamic therapy in liver cancer cells. 

Our findings demonstrated effective encapsulation of the Ir com-
plexes within the MCM41@COOH nanoparticles, with encapsulation 
efficiencies exceeding 30%. The functionalized nanoparticles exhib-
ited significant production of singlet oxygen upon light irradiation. 
In cellular assays, these nanoparticles demonstrated low toxicity to-
wards both healthy and cancerous cell strains in the absence of light, 
while exhibiting potent photodynamic effects when exposed to light, 
with short illumination times and low nanoparticle concentrations. 
Magnetic nanoparticles have applications in both in vivo and in vitro 
imaging. The creation of an innovative hybrid nanomaterial, mag-
netic carbon nanotubes (CNTs) coated with M-SiNPs and presenting 
enhanced loading capacity of therapeutic molecules has been report-
ed by (Singh, et al. [48]). This nanomaterial served dual purposes of 
drug delivery and imaging. Through the use of magnetism, the hybrid 
nanocarriers demonstrated a significant uptake by cells and exhibited 
positive biological effects. The potential applications of this unique 
multifunctional nanocarrier lie in drug delivery and imaging systems 
[48]. Within their study, (Rao, et al . [49]). created a type of meso-
porous silica nanoparticles called reactive oxygen species (ROS)-re-
sponsive MSNs (RMSNs). These RMSNs were designed with a gado-
linium (Gd)-DOTA complex acting as the ROS-responsive gatekeeper 
and polyethylene glycol (PEG)-conjugated chlorin e6 serving as the 
ROS generator. 

The purpose of these nanoparticles was to combine magnetic res-
onance (MR) imaging with photodynamic chemotherapy, allowing for 
guided treatment. In order to address concerns regarding the toxicity 
of gadolinium-based contrast agents, Fe@FeOx nanoparticles have 
been explored as a viable alternative [50]. For highly sensitive MRI, 
(Yuan, et al. [51]) designed mesoporous silica nanoparticles coated 
with liquid Perflubron as hosts for 129Xe, enabling precise targeting of 
lung cancer cells and allowing imaging after surface alteration with 

the peptide sequence RGD. Ultrasound constitutes a low-cost and safe 
real-time imaging technique widely used in operating rooms given its 
excellent spatial and temporal resolution [52]. In a study by (Liber-
man, et al. [53]), iron-coated SiNPs filled with perfluoropentane gas 
were functionalized with diethylenetriaminepentaacetic acid to en-
able tumor identification and biodistribution analysis. To enhance 
hydrophobicity, the researchers covalently attached perfluorodec-
yltriethoxysilane, known for its low surface energy and superhy-
drophobic properties, to the surface of SiNPs that were coated with 
β-cyclodextrin. These modified particles were utilized for combined 
antivascular and chemo-sonodynamic therapy [54]. Montoya et al. in 
2020, devised a new approach for producing innovative GSNs (F127-
hMSNs) that combine small particle size with high responsiveness to 
ultrasound (US). The F127-hMSNs were created by modifying hydro-
phobic ∼50 nm MSNs with a biocompatible amphiphilic copolymer 
called Pluronic F127. They achieved continuous ultrasound imaging 
for up to 20 minutes, thus anticipating that the GSNs developed with-
in their study could find various applications in clinical settings, such 
as molecular US imaging of solid tumors, drug delivery and cancer 
treatment [52]. 

SiNPs have the potential to serve as radiosensitizers during ra-
diolabeled imaging applications. Innovative radioactive labels can be 
employed to monitor the spread, degradation and eradication of silica 
nanoparticles in vivo. In a study by (Bindini, et al. [55]), zirconium-89 
(89Zr) was used to label both the dense core and mesoporous shell of 
core-shell silica nanoparticles, demonstrating stable biodistribution 
over a period of 6 hours. In another approach, (Chen, et al. [56]) uti-
lized 89Zr to label the oxygen donors of deprotonated silanol groups 
on the surface of silica nanoparticles (Portilho, et al. [57]). reported 
that doped with dacarbazine and labeled with technetium 99 meta-
stable, magnetic core M-SiNPs, demonstrated their effectiveness and 
dependability as a nano-imaging agent for melanoma. Furthermore, 
(Detappe, et al. [58]) have introduced a new SiBiGdNP, which served 
as a contrast agent for dual-modality imaging (MR and CT), as well 
as clinical radiation dose amplification. The incorporation of Gd at-
oms provided positive contrast enhancement for MR imaging, while 
the inclusion of both Gd and Bi atoms enabled CT imaging contrast. 
The SiBiGdNP synthesis involved a top-down approach using a silica 
structure carrying DOTA−Gd, which has been proved to be safe for 
routine intravenous administration, enabling on-site radiosensitiza-
tion and enhancing image contrast for the detection of lung cancer.

Photoacoustic (PA) imaging comprises a hybrid imaging tech-
nique that utilizes both light and sound to generate images. It in-
volves the use of short NIR laser pulses to stimulate thermoacoustic 
waves within a tissue containing chromophores based on nanoparti-
cles [59]. In a study by (Chaudhary, et al. [59]), two contrast agents 
were developed using indocyanine green (ICG) loaded into magnetic 
silica nanoparticles (M-SiNPs). One agent utilized amine-modified 
M-SiNPs, while the other employed layer-by-layer polyelectrolyte 
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coatings on ICG-M-SiNPs. Both agents exhibited enhanced PA signals 
compared to pure ICG. (Shao, et al. [60]) developed rattle-structured 
polydopamine@mesoporous silica nanoparticles for in vivo applica-
tions in photoacoustic (PA) imaging and enhanced low-temperature 
Photothermal Therapy (PTT). These nanoparticles were designed to 
achieve complementary effects by inhibiting autophagy and altering 
glucose metabolism, thereby improving the effectiveness of the ther-
apy. For the diagnosis of liver diseases [61], Lee et al. developed a PA 
contrast agent known as HA–SiNP conjugates to enhance the PA im-
aging contrast specifically in the liver. The feasibility of these HA–SiNP 
conjugates as a liver-targeted and biocompatible PA contrast agent 
was successfully demonstrated.

In future investigations, HA–SiNP conjugates could be utilized 
for liver-targeted drug delivery, cirrhosis targeting, and liver cancer 
targeting and therapy, utilizing the numerous HA receptors such as 
CD44 and HA receptor for endocytosis. Therefore, they demonstrated 
that the light-absorbing HA–SiNP conjugates hold significant prom-
ise as a liver-targeted PA imaging contrast agent and liver-targeted 
drug transfer agent. To achieve personalized medicine, researchers 
have developed multifunctional nanoprobes that combine fluores-
cent and magnetic imaging capabilities (Cheng et al. [62]). success-
fully synthesized a dual-modal bioimaging nanoprobe for targeted 
photoluminescence (PL) and magnetic resonance (MR) imaging. This 
nanoprobe was created by conjugating iridium(III) complexes, gad-
olinium(III), and RGD peptide onto SiNPs. In comparison to the Ir@
SiO2-Gd NPs, the Ir@SiO2-Gd-RGD NPs demonstrated significantly 
improved brightness in photoluminescence and enhanced MR signal 
specifically at the tumor site. Their findings highlighted the consid-
erable potential of the Ir@SiO2-Gd-RGD NPs for future applications 
in cancer diagnosis and treatment. (He, et al. [63]) presented a new 
approach for synthesizing Gd3+-loaded red fluorescent mesoporous 
silica nanoparticles (MSNs). 

This involved directly encapsulating an AIEgen (TPATBT) and 
subsequently loading Gd3+ using APTES. In comparison to commonly 
reported blue-green fluorescent nanoparticles, the red fluorescence 
exhibited by these nanoparticles enabled better tissue penetration 
while minimizing phototoxicity and interference from autofluores-
cence. Their study offered an alternative strategy for designing and 
fabricating highly efficient fluorescent nanoparticles that can serve 
as MR imaging probes. Similarly, according to (Tsou, et al. [64]), an 
eco-friendly drug delivery system utilizing rMSNEuGd@Fucoidan has 
been effectively synthesized. This material incorporated two imaging 
metals, Eu3+ and Gd3+ into SiNPs to confer dual-imaging capabilities 
to the system. (Wu, et al. [65]) attached nucleus-pesnetrating peptide 
and hyaluronic acid to SiNPs to enable dual imaging and targeting 
functions for prostate cancer depiction. In another study by (Du, et 
al. [66]), the antibody specific to prostate-specific membrane antigen 
and Cy7, a fluorescent substance, were conjugated with Mn2O@M-
SiNPs for tumor detection (Ovejero-Paredes, et al. [67]).  underscored 

the significant potential of our fibrous SiO2-based nanoplatform as 
a theranostic agent for breast cancer in mouse models. Through the 
inclusion of the targeting moiety folic acid, the produced nanoma-
terials exhibit selective accumulation inside the tumor’s region fol-
lowing systemic administration, demonstrating their drug targeting 
ability. Additionally, the incorporation of the NIRF dye enables facile 
visualization and in vivo fluorescence imaging, facilitating diagnostic 
activities. Furthermore, the synergistic effect of chlorambucil and tin-
based metallodrug contributes to an enhanced therapeutic efficacy 
against human breast adenocarcinoma, thereby showcasing the mul-
titherapeutic capabilities of the nanoplatform. In addition, according 
to (Esmaeili, et al. [68]) based on the obtained results, the MCM@
CS@Au-Apt(CUR) nanosystem demonstrates potential as a cancer 
nanotheranostics platform for pH-dependent fluorescence imaging 
and targeted delivery of curcumin to specific cells. Specifically, when 
MUC-1 positive tumor cells are present, the aptamer conjugated to 
the nanosystem exhibits high-affinity binding to its target, resulting 
in the formation of an aptamer-target complex. Consequently, the 
double strands of DNA aptamer are separated, resulting in a slight 
fluorescence signal because of the limited affinity of mononucleotides 
to MCM@CS@Au. Through alterations monitoring in the fluorescence 
intensity, the progress of targeted drug transfer can be tracked.

Conclusion
Silica nanoparticles (SiNPs), given their favorable physical and 

chemical properties, have gained significant attention as drug deliv-
ery systems, as well as both reagents and carriers in medical diag-
nostics. Their ability to target specific organs and release drugs or 
therapeutic agents has been explored extensively in various human 
systems with physical barriers. While the majority of SiNP research in 
drug delivery has focused on cancer targeting, this review also high-
lights their potential in addressing other diseases across different hu-
man body systems. In the realm of medical diagnosis, SiNPs exhibit 
five distinct types of physical imaging reactions, and recent advance-
ments in SiNP research have been summarized. SiNPs have arose as 
a promising biomedical platform, revolutionizing disease treatment 
and diagnosis. However, there is still a considerable journey ahead for 
clinical translation and commercialization of SiNPs, which will rely on 
the evolution of standardized and unified methods for the biological 
evaluation of nanoplatforms.
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