
Research Article 

ISSN: 2574 -1241              DOI: 10.26717/BJSTR.2023.51.008046

Impact of Contaminated Surfaces on the Transmission 
Dynamics of Corona Virus Disease (Covid-19)

Idowu, Kabir Oluwatobi1*, Loyinmi, Adedapo Chris2

1Department of Mathematics, Purdue University, USA
2Department of Mathematics, Tai Solarin University of Education, Ijagun, Ogun state. Nigeria.

*Corresponding author: Idowu Kabir Oluwatobi, Department of Mathematics, Purdue University, USA

Copyright@ : Idowu Kabir Oluwatobi | Biomed J Sci & Tech Res | BJSTR. MS.ID.008046. 42280

ABSTRACT

We assumed a homogeneously mixed population and that the disease does not only spread by direct 
contact with an infected individual but also by touching infected surfaces (environment). We then propose 
an SQEIRVS model and validate correlation between upsurge in transmission and touching surfaces 
contaminated by droplets from COVID-19 infected individual. We performed the appropriate analyses for 
positivity and boundedness, reproduction number, and stability. The problem was modelled numerically. 
Furthermore, we identified the criteria required for the stability of both DFE and endemic equilibrium. 
Asymptotically, the DFE is stable. Additionally, the endemic equilibrium is stable. The numerical results 
showed that treatment and immunization are effective in reducing the spread of the infections.
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Introduction
According to Anthony RF [1], coronaviruses are regarded as the 

largest group of viruses belonging to the Nidovirales order, which 
includes the Coronaviridae, Arteriviridae, Mesoniviridae, and Roni-
viridae families. Coronavirus virions are circular, with a diameter of 
nearly 125 nm. The most conspicuous characteristic of coronaviruses 
is the club-shaped spiked projections originating from the surface of 
the virion. Such spikes are regarded as one of the definite characteris-
tics of the virion, which gives them the appearance of a solar corona, 
thus leading to the term coronaviruses. The virion, called Coronavir-
idae, is found in a broad range of hosts and carriers, infecting many 
avian species and subspecies and even mammals. This virus most 
often affects the upper respiratory, gastrointestinal, hepatic, and cen-
tral nervous systems through a number of diseases (Gallagher [2-5]). 
Hassan [3] stated that the human types of coronavirus are linked to 
minor clinical symptoms (Akinfe [6-12]). At the same time, the Coro-

naviridae family is divided into two, which include Torovirinae and 
Coronavirinae (Akinfe [13-15)). Further, the Coronavirinae subfamily 
is classified into alpha-, beta-, gamma-, and delta-COVs (Lawal, et al. 
[16-19]. These viruses have a virus-related RNA genome that mea-
sures from 26 to 32 kilobases in dimension, and this makes it possible 
to isolate them from different animal species. Moreover, the corona-
viruses can be seen under the electron microscope as they possess a 
crown-like appearance. Ideally, the extensive spread and associated 
health risks of the disease make it an essential pathogen. The coro-
navirus disease 2019 (COVID-19) is a pandemic and has its origins in 
Wuhan Province, China, in late 2019. 

It is, however, caused by the severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV2).  As of June 6, 2020, the number of con-
firmed cases worldwide was 66,63,204, with over 392802 deaths, as 
per the WHO COVID-19 Dashboard (Lawal [20, 21]). The U.S.A. has 
the largest number of cases worldwide, with over 18,57,772 cases 
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and 107911 deaths, followed by Brazil and Russia with 6,14,941 and 
4,58,869 confirmed cases, respectively (Lawal, et al. [22, 23]). China, 
where the pandemic began, has reported 84,620 confirmed cases and 
4,645 deaths to date. In India, there have been 2,36,657 total cases 
with over 6,642 deaths till now (6 June 2020). This pandemic has led 
to worldwide lockdown, strangling of the global economy, and devas-
tation of human life (Atri [24]).  Going down the history lane, SARS-
CoV, a group 2b coronavirus, was detected as the potential cause of the 
2002–2003 outbreak of Severe Acute Respiratory Syndrome (SARS) 
in the Guangdong Province of China. In a cluster of highly pathogenic 
respiratory tract infections in Saudi Arabia and other countries in the 
Middle East throughout 2012, Middle East Respiratory Syndrome-CoV 
(MERS-CoV) was found to be the potential cause and is an example of 
another novel human CoV (Zaki AM [26]).  Rismanbaf A. [27] stated 
that the World Health Organisation (WHO) officially named the dis-
ease the coronavirus disease 2019 (COVID-19) on February 11, 2020. 
World Health Organization (WHO) also announced a global emergen-
cy on January 31st due to increasing concern about its rapid spread, 
and the disease became listed as a pandemic on March 11th, 2020.

As per WHO, the Centres for Disease Control and Prevention 
(CDC), and the FDA, there are presently no drugs or vaccinations 
that are known to be successful for SARS-CoV-2 management or 
preventing the spread. Within clinical trials and compassionate use 
guidelines, numerous different compounds are used based on their 
in vitro activity (against SARS-CoV-2 or associated viruses) and on 
constrained clinical knowledge (Loyinmi [28]). Gallagher TM [29] 
stated that the origin of the virus has been attributed to exposure to 
the Huanan seafood market, which was common among the earliest 
cases contributing to the SARSCoV2 epidemic in China. According to 
Rismanbaf A [30], mathematical modelling has become an important 
tool in understanding the dynamics of disease transmission and in 
decision making processes regarding intervention programmes for 

disease control. Mathematical models provide a framework for un-
derstanding the transmission dynamics of diseases.

Model Formulation

In this study, we considered an SQEIRVS Model with restriction 
in the recruitment rate into the population [9]. We assumed that the 
population is homogeneously mixed and that the disease does not 
only spread through direct contact with an infected individual but 
also through contact with an infected surface (environment) [10]. 
Droplets from sneezing infected individual contaminate surfaces and 
which is the reason behind world-wide mask wearing to prevent di-
rect infection and also contaminating nearby surfaces when sneezing 
or talking in public [11]. In this study, P(t) denotes the total number 
of human population at time (t), S(t) denotes susceptible individuals, 
Q(t) is the Quarantined humans, E(t) is the Exposed humans’ popula-
tion, I(t) is the Infectious human population, R(t) represents Recov-
ered humans and V(t) denotes virus’s infections in the environment 
[12]. 

φ is the rate of contact of human with the environment. 1ε is the 
rate of human contact with infectious area of the environment while 

2ε  is the rate of contact exposed and infectious human with the envi-
ronment [13]. 1β  denotes the probability of human getting infected 
when in contact with environment while 2β is the probability of the 
environment getting infected when in contact with human [14]. µ is 
per capita natural death rate of human, δ is per capita rate of loss of 
immunity by recovered individuals. hλ denotes the force of infection 
for susceptible human when in contact with an infected human while 

eλ  represents the force of infection for susceptible human when in 
contact with an infected environment [15]. 

λ  is the force of infection i.e. eh λλλ +=  (1)

Where )(11 tIh φεβλ =  and )(22 tVe φεβλ =  (2)

Also we have π  to denote the recruitment rate into the susceptible class [16]. Quarantined individuals who show symptoms of the infection Figure 1: Compartmental diagram for the transmission dynamics of COVID 19.
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progress to the exposed compartment at the rate of 1α while those 
who tested negative move back to the susceptible class at the rate 4α
. Exposed individuals progress to the infectious class at the rate of 2α
. Infectious human are recovered at the rate 

3α
while COVID 19 in-

duce death rate is assumed to be σ  [17]. Also, 2,1, =ifi is the rate 
of virus in the environment from both the exposed (E) and infectious 
(I) class and the virus is removed from the environment at the rate m  
[18] (Figure 1).

Therefore, the dynamics of the model is presented below as a sys-
tem of non-linear differential equation

4
( ) ( ) ( ) ( ) ( ) ( )dS t H S t S t Q t R t

dt
π λ µ α δ= − − + +

4 1
( ) ( ) ( ) ( ) ( )dQ t H S t Q t

dt
λ α µ α= − + +

1 2
( ) ( ) ( ) ( )dE t Q t E t

dt
α α σ µ= − + +

2 3
( ) ( ) ( ) ( )dI t E t I t

dt
α σ µ α= − + +

3
( ) ( ) ( ) ( )dR t I t R t

dt
α δ µ= − +

1 2
( ) ( ) ( ) ( )dV t f E t f I t mV t

dt
= + −  (3)

Model Analysis

Under this section, we consider the positivity and boundedness of 
the solution of model, we also consider the reproduction number and 
the stability of the disease free equilibrium and endemic equilibrium 
[19].

Positivity and Boundedness of Solution

We hereby present a lemma for the positivity and boundedness 
of the solution of the model as follows:

Lemma 1: The solution S(t), Q(t), E(t), I(t), R(t), and V(t) of sys-
tem [1] with the initial condition S(0) > 0, Q(0) > 0, E(0) > 0, I(0) > 0, 
R(0) > 0 and V(0) > 0 are all positive for all t > 0.

Proof : From system [1] First equation

4
( ) ( ) ( ) ( ) ( ) ( )dS t H S t S t Q t R t

dt
π λ µ α δ= − − + +  That is 

( )( ) ( ) ( ) 0dS t H S t
dt

λ µ= + ≥

( )( ) 0,H td Se
dt

λ µ+  ≥   
( )( ) ,H tSe cλ µ+ ≥ ( )( )( ) H tS t ce λ µ− +≥ At 

t=o ( )( )( ) (0) 0H tS t S e λ µ− +≥ ≥

Therefore 0)( ≥tS (Thus )(tS stays positive). 

Let 4 1( ) ,α µ α+ + = Ω ( ) ( ) ( ) ( )dQ t H S t Q t
dt

λ= −Ω  That is 
( ) ( )dQ t Q t

dt
≥ −Ω

( ) 0td Q t e
dt

Ω  ≥  At t=0, ( ) (0) 0tQ t Q e−Ω≥ ≥  Therefore 

( ) 0Q t ≥
(Thus )(tQ stays positive).

Let ϕµσα =++ )( 2 , )()()(
1 tEtQ

dt
tdE ϕα −= ,That is 

)()( tE
dt

tdE ϕ−≥ ,Then 0)()(
≥+ tE

dt
tdE ϕ

[ ] 0)( ≥tetE
dt
d ϕ

, At t=0, 0)0()( ≥≥ − teEtE ϕ
, Therefore 

0)( ≥tE (Thus )(tE stays positive).

Let ωµσα =++ )( 3 , )()()(
2 tItE

dt
tdI ωα −= , That is 

)()( tI
dt

tdI ω−≥ , Then 0)()(
≥+ tI

dt
tdI ω ,

[ ] 0)( ≥tetI
dt
d ω

, At t=0, 0)0()( ≥≥ − teItI ω
 Therefore 

0)( ≥tI (Thus )(tI stays positive).

)()()()(
3 tRtI

dt
tdR µδα +−= , That is )()()( tR

dt
tdR µδ +−≥ , Then 

0)()()(
≥++ tR

dt
tdR µδ ,
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[ ] 0)( )( ≥+ tetR
dt
d µδ

 Integrating both sides, we have 

cetR t ≥+ )()( µδ , tcetR )()( µδ +−≥

At t=0, 0)0()( )( ≥≥ +− teRtR µδ  Therefore 0)( ≥tR (Thus 

)(tR stays positive).

1 2
( ) ( ) ( ) ( )dV t f E t f I t mV t

dt
= + −

 That is 

( ) ( )dV t mV t
dt

≥ −
, 

( ) (0) 0mtV t V e−≥ ≥  Therefore

( ) 0V t ≥ (Thus )(tV stays positive).

Now, ( ) ( ) ( ) ( ) ( ) ( )P t S t Q t E t I t R t= + + + + , Thus 

( ) 0P t ≥

This is sufficient to show that P(t) is bounded in the region R+  

and it remains positive for all values of 0t ≥

( ) ( ) ( ) ( ) ( ) ( )P t S t Q t E t I t R t= + + + +

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

P t S t Q t E t I t R t
dt

E t I t

π µ

σ

= − + + + +

− + ,

 ( )( ) ( ) ( ) ( )P t P t E t I t
dt

π µ σ= − − +

( ) ( )P t P t
dt

µ π+ ≤ , ( ) t td P t e e
dt

µ µπ  ≤ 

Integrating both sides gives ( ) t tP t e e Cµ µπ
µ

≤ +

Therefore, ( )( ) 1 tP t Ce µπ
µ

−≤ +  where C is the constant of in-

tegration ( ) ( ) ( ) ( )lim 1 lim 1t

t t
p t Ce p tπ π π

µ µ µ
−∞

→∞ →∞
≤ + = ≤ =       (4)

This proves the boundedness of the solution inside R [20]. This 
implies solutions of the system are positive. Thus R is positive invari-
ant and attracting and hence, it is sufficient to consider the dynamics 
of the system [21].

Disease Free Equilibrium Points (DFE)

To obtain the Disease free equilibrium, we set all class to zero 
apart from the susceptible class [22].

0 0Sπ µ− =  (5)

That is 0S π
µ

=

The DFE point of the system is

( )0 0 0 0 0 0
0 ,0,0,0,0,0,E S Q E I R V π

µ
 

= + + + + + =  
 

 (6)

Now let us check if the DFE point actually exists for system [1]

Existence of Equilibrium (Critical) Point

We obtain the equilibrium points of system [1] by solving, 
equating the rate of change with respect to time (t) of all dynamical 
variables to zero [23].

4( ) ( ) ( ) ( ) ( ) 0H S t S t Q t R tπ λ µ α δ− − + + =     (7)

( ) ( ) ( ) 0H S t Q tλ −Ω =                     (8)

1 ( ) ( ) 0Q t E tα φ− =                              (9)

2 ( ) ( ) 0E t I tα ω− =                             (10)

3 ( ) ( ) ( ) 0I t R tα δ µ− + =                (11)

1 2( ) ( ) ( ) 0f E t f I t mV t+ − =         (12)

Therefore 1 2 3

1 0

( )( ) HR t
A A

πλ α α α
λ

=
+

       (13)

( )
1 2

1 0

( ) ( )( ) HI t
A A

δ µ πλ α α
λ

+
=

+
                   (14)

( )
1

1 0

( ) ( )( ) HE t
A A

ω δ µ πλ α
λ

+
=

+
                  (15)

https://dx.doi.org/10.26717/BJSTR.2023.51.008046


Copyright@ : Idowu Kabir Oluwatobi | Biomed J Sci & Tech Res | BJSTR. MS.ID.008046. 42284

Volume 51- Issue 1 DOI: 10.26717/BJSTR.2023.51.008046

( )1 0

( ) ( )( ) HQ t
A A

φω δ µ πλ
λ
+

=
+

                (16)

1 0

( )( )S t
A A
φω δ µ π

λ
Ω +

=
+                          (17)

( )
( )

1 1 2 2

1 0

( ) ( )
( )

H f f
V t

m A A
δ µ πλ α ω α

λ
+ +

=
+

   (18)

where

0 ( )A ϕω δ µ µ= + Ω
, 1 4 1 2 3(( ( )( )) )A ϕω δ µ α λα α α= + Ω− −

,  

2 1 1 2 2( ) ( )A f fδ µ πα ω α= + +  and 3 12 2( )A δ µ πα α= +

Recall that ( ) h eHλ λ λ= +  and ( )1 1 2 2( ) ( )V t I tλ ϕ ε β ε β= +

( )
( )

( )

1 1 2 2
1 1

1 0

1 2
2 2

1 0

( ) ( )

( )
( ) ( )

H f f
m A A

H
H

A A

δ µ πλ α ω α
ε β

λ
λ ϕ

δ µ πλ α αε β
λ

 + + 
 + =  +
+  + 

      (19)

( )
( )

1 1 2 2 2 3

1 0

2
1 0 1 1 2 2 2 3

( ) ( )

( ) ( ) ( )

A m AH H
m A A

mA H mA H A m A H

ε β ε βλ ϕλ
λ

λ λ ϕ ε β ε β λ

 +
=   + 

⇒ + = +

( )( )2
1 0 1 1 2 2 2 3( ) ( ) 0mA H mA A m A Hλ ϕ ε β ε β λ+ − + =

( )( )0 1 1 2 2 2 32

1

( ) ( ) 0
mA A m A

H H
mA

ϕ ε β ε β
λ λ

− +
+ =

( )( )0 1 1 2 2 2 3

1

( ) ( ) 0
mA A m A

H H
mA

ϕ ε β ε β
λ λ

 − +
+ =  

 

( ) 0Hλ = or 
( )1 1 2 2 2 3 0

1

( )
A m A mA

H
mA

ϕ ε β ε β
λ

+ −
=            (20)

Case 1  ( ) 0Hλ =

Then from (6) to (11), we observed that 0 ,0,0,0,0,0,E π
µ

 
=  
 

Therefore, the disease free equilibrium point [24], exist and this 
represent a state where there is no presence of the novel corona virus 
disease in the population i.e. the infectious class equals zero [25]. 

Reproduction Number 0R

Using the next generation matrix method [26], we determine the 
basic reproduction number 0R and the control reproduction number 

cR of the model [27]. The matrices P and V denoting the new infec-
tion term and the remaining transfer terms at the disease free equilib-
rium respectively are given by 

 

1 2

0
0

S

P

f E f I

λ 
 
 =
 
 + 

4 1

2 1

2 3

( )
( )

( )

Q
E Q

V
E I

mV

α µ α
α σ µ α
α σ µ α

+ + 
 + + − =
 − + + +
 
 

    (21)

Consequently, we have the next generation matrix

1 1 2 2

1 2

0 0

0 0 0 0
0 0 0 0
0 0

P

f f

β ε ϕπ β ε ϕπ
µ µ

 
 
 

=  
 
 
  

 and

1

1 2

2 3

0 0 0
0 0

0 0
0 0 0

w
w

V
w

m

α
α

 
 − =
 −
 
 

 (22)

Where

 1 4 1w α µ α= + + , 2 2 1w fα σ µ= + + + , 3 2 3w fσ µ α= + + + , 

4w δ µ= +   (23)

1

1 2

1 1 2 2 2 3

1 2

1 2 3 3

1 0 0 0

1 0

10 0

10 0 0

w

w w w w wV

w w w w

m

α α

α α
−

 
 
 
 
 
 =
 
 
 
 
  

 (24)

           

1 1 1 2 1 1 2 2

1 2 3 3

1

1 1 2 1 2 1 1 2 2

1 2 1 2 3 2 2 3 3

0

0 0 0 0
0 0 0 0

0

w w w w m

PV

f f f f f
w w w w w w w w w

β ε ϕπα α β ε ϕπ β ε ϕπ
µ µ µ

α α α α

−

 
 
 
 

=  
 
 

+ + 
   (25)
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( )1 2 2 1 3 2 2 2 1 1 11
0

3 2 1

( )
f w f m

R PV
mw w w

α β ε ϕπ α α α β ε ϕπ
ρ

µ
− + +

= =  (26)

Stability of Disease Free Equilibrium (DFE)

Theorem 1: The DFE point of the system is locally asymptomati-
cally stable whenever 10 <R

Proof: Let 

1 4

2 4 1

3 1 2 1

4 2 2 3

5 3

6 1 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

F H S t S t Q t R t
F H S t Q t
F Q t f E t
F E t f I t
F I t R t
F f E t f I t mV t

π λ µ α δ
λ α µ α
α α σ µ
α σ µ α
α δ µ

= − − + +
= − + +
= − + + +
= − + + +
= − +
= + −

 (27)

We use the Jacobian of the model evaluated at DFE to establish 
the local stability of the DFE [28]. The stability is determined based 
on the eigenvalue of the corresponding Jacobian which are functions 
of the model parameters [29].

4

1

1 2
0

2 3

3 4

1 2

0
0 0 0
0 0 0 0

( )
0 0 0 0
0 0 0 0
0 0 0

w
w

J F
w

w
f f m

µ α γ δ η
γ η

α
α

α

− − − 
 − 
 −

=  − 
 −
 

−  

 

Where, 
1 1 2 2,β ε φπ β ε φπγ η
µ µ

= =
 (28) 

Clearly, we see that the eigenvalues are 1 2 4, wλ µ λ= − = −   
then we have the matrix [30].

1

1 2

2 3

1 2

0
0 0

0 0
0

w
w

M
w

f f m

γ η
α

α

− 
 − =
 −
 − 

The characteristic equation of the matrix is

4 3 2
1 2 3 4A A A Aλ λ λ λ+ + + +  (29)

1 3 2 1 2 3 2 1 3 2 3 1 2 1,A m w w w A mw mw mw w w w w w w= + + + = + + + + +

3 1 1 3 2 3 1 2 1 2 1 3 2 1A f mw w mw w mw w w w wαη α α γ= − + + + − +

4 2 1 2 1 1 31 2 1 3 2 1A f f w m mw w wα α η αη α α γ= − − − +

2 2 2 2 1 1
4 2 1 2 1 1 3 2 1 3 2 1A f f w m mw w wβ ε ϕπ β ε ϕπ β ε ϕπα α α α α

µ µ µ
= − − − +

On simplification, 
2 2 2 2 1 1

4 2 1 2 1 1 3 2 1 3 2 1A f f w m mw w wβ ε φπ β ε φπ β ε φπα α α α α
µ µ µ

= − − − +

( )1 2 2 1 3 2 2 2 1 1 1
3 2 1

3 2 1

1
f w f m

mw w w
mw w w

α β ε ϕπ α α α β ε ϕπ
µ
+ + 

= − 
 

Therefore we have  

( )3 2 1 01 0mw w w R− >  if 0 1R <        (30)

Where 
( )1 2 2 1 3 2 2 2 1 1 1

0
3 2 1

f w f m
R

mw w w
α β ε ϕπ α α α β ε ϕπ

µ
+ +

=

Thus the eigenvalues of the model are real and negative if 10 <R
[31], therefore the DFE is locally asymptotically stable and unstable if 

10 >R .

Stability of Disease Endemic Equilibrium (DEE)

Theorem 1: The DEE point of the system is locally asymptomati-
cally stable whenever 10 >R

Proof: At the endemic equilibrium, we have the Jacobian matrix 
to be

( )*
4 1 1 2 2

*
1 1 1 2 2

* 1 2

2 3

3 4

1 2

( ) 0

( ) 0 0
0 0 0 0( )
0 0 0 0
0 0 0 0
0 0 0

H S S

H w S S
wJ F

w
w

f f m

λ µ α β ε ϕ δ β ε ϕ

λ β ε ϕ β ε ϕ
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The characteristic equation is given by * 0J Iλ− =

From here [32], we shall use the property of 0R  to analyze the 
stability of the endemic equilibrium states ((Feng et al., (200`)). 
When 10 >R [33], the system has a unique endemic equilibrium that 
is globally asymptotically stable [34]. So, from above,

( )1 2 2 1 3 2 2 2 1 1 1
0

3 2 1

f w f m
R

mw w w
α β ε ϕπ α α α β ε ϕπ

µ
+ +

=

( )1 2 2 1 3 2 2 2 1 1 1

3 2 1

1
f w f m

mw w w
α β ε ϕπ α α α β ε ϕπ

µ
+ +

>       (32)

( )1 2 2 1 3 2 2 2 1 1 1 3 2 1f w f m mw w wα β ε ϕπ α α α β ε ϕπ µ+ + >      (33)

The inequality above gives the necessary and sufficient condition 
for the endemic equilibrium of the model to be globally asymptoti-
cally stable [35]. It is therefore interpreted as the product of the con-
traction and total breakdown of the susceptible class must be greater 
than the total removal rate for the quarantined class, Exposed class, 
Infectious class and the environment for the model to be globally as-
ymptotically stable [36]. Therefore we must ensure that the endemic 
equilibrium state is never stable [37].

Numerical Simulation
The numerical simulation of the dynamics of this COVID-19 mod-

el over time was implemented with Maple software using the Run-
ge-kutta-felhberg of fourth-fifth order (RKR-45) with degree four 
interpolant [38]. We make use of the variables in (Table 1) and the 
parameters given in (Table 2) in simulation based on the data provid-
ed [39]. Some values assigned to the parameter were derived from 
epidemiological literatures while others were estimated [40]. 

Table 1: Description of variables in the system in system [3].

State variables Description

( )tS Susceptible Human

( )tQ Quarantined Human

( )tE Exposed Humans

( )tI Infectious Human

( )tR Recovered Humans

( )tV Virus in the Environment

Table 2: Symbols and Values of parameters used in the model.

Description of Parameter Symbols Value Source

Recruitment rate π 0.02461 Estimated

Natural death rate of humans µ 0.0122 Adeniyi (2020)

Rate in which immunity is lost δ 0.4335 Adeniyi (2020)

Rate of COVID-19 induced 
death σ 0.1139 Adeniyi (2020)

Rate of progressive quarantined 
individuals to the exposed class 1α

0.5 Estimated

Rate of progressive exposed 
individuals to the infectious 

class 2α 0.56 Adeniyi (2020)

Recovery rate of infectious 
individuals 3α

0.547 Estimated

Rate of progressive quarantined 
individuals to the susceptible 

class 4α 0.56 Assumed

Rate of virus in the environment 
from the exposed 1f

0.845 Estimated

Rate of virus in the environment 
from the infectious class 2f 0.799 Estimated

Rate of removal of virus from 
the environment m 0.975 Assumed

Discussion of Findings
As seen in (Figure 2), when the viral load in the environment rises, the 
vulnerable population decreases. However, after a certain amount of 
time (60 days), the quarantine, exposed, infected, and recovered cat-
egories do not change. This demonstrates that the virus is a serious 
danger to the infected person since the infectious population is de-
creasing as a result of the deaths caused by the virus. The proportion 
of the population that is vulnerable to the virus decreases exponen-
tially, as seen in (Figures 3 & 4) shows that the vulnerable population 
steadily declines. The fact that nearly everyone in a group is infected 
indicates a stable endemic equilibrium condition. (Figure 5): As a re-
sult of a rise in resistance to COVID-19 With better prevention and 
treatment comes a larger vulnerable population. Because of a rise in 
resistance to COVID-19 (Figure 6). As immunity and treatment im-
prove, it is shown that the quarantined population diminishes. Immu-
nity to COVID-19 rises, as seen in (Figure 7). As the number of people 
who are immune to the disease and receiving treatment grows, the 
number of those who are exposed drops. (Figure 8): As a result of a 
rise in resistance to COVID-19, It has been shown that when immunity 
and treatment improve, the infectious population declines. Because 
of a rise in resistance to COVID-19, as seen in (Figure 9). It has been 
noted that as treatment and immunity improve, more people will re-
cover. Because of a rise in resistance to COVID-19, as seen in (Figure 
10).creases as the immunity and treatment increases.
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Figure 2: Transmission dynamics of COVID-19 infections between human population and the environment within the first 60 days.

Figure 3: Transmission dynamics of COVID-19 infections between human population and the environment (within 200 days).
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Figure 4: Transmission dynamics of COVID-19 infections between human population and the environment (after 200 days)

Figure 5: Effect of varying recovery rate  3α (from natural immunity and treatment) on susceptible population

https://dx.doi.org/10.26717/BJSTR.2023.51.008046


Copyright@ : Idowu Kabir Oluwatobi | Biomed J Sci & Tech Res | BJSTR. MS.ID.008046.

Volume 51- Issue 1 DOI: 10.26717/BJSTR.2023.51.008046

42289

Figure 6: Effect of varying recovery rate 
3α  (from natural immunity and treatment) on Quarantined population

Figure 7: Effect of varying recovery rate  
3α  (from natural immunity and treatment) on exposed population
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Figure 8: Effect of varying recovery rate  
3α  (from natural immunity and treatment) on infectious population.

Figure 9: Effect of varying recovery rate  3α  (from natural immunity and treatment) on recovered population.

https://dx.doi.org/10.26717/BJSTR.2023.51.008046


Copyright@ : Idowu Kabir Oluwatobi | Biomed J Sci & Tech Res | BJSTR. MS.ID.008046.

Volume 51- Issue 1 DOI: 10.26717/BJSTR.2023.51.008046

42291

Figure 10: Effect of varying recovery rate  3α  (from natural immunity and treatment) on virus population in the environment.

Conclusion 
This study focused on the transmission dynamics of COVID-19 

[41]. We have proposed a non-linear mathematical model to consid-
er the transmission dynamics and the impact of increase immunity 
and treatment on controlling the transmission dynamics of COVID-19 
[42]. The positivity and boundedness, stability analysis and repro-
duction number where all analytically solved for. It is established that 
Disease free equilibrium point is stable if 10 <R  and that the endem-
ic equilibrium state exist only if 10 >R .The study also revealed that 
increase in immunity and treatment cause significant decrease in 
quarantined population, exposed population, infectious population 
and virus in the environment, while it caused increase in susceptible 
population and recovered population [43]. 

Recommendation 
Based on the findings of this study and on the imminent global 

second wave, we recommend governments and relevant agencies 
should provide adequate health facilities [44-47].to increase the rate 
of treatment and intensify public awareness on the positive effect 
of maintaining considerable physical distance, the use of face mask, 
avoid touching surface and constant application of hand sanitizers 
when in public places.
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