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ABSTRACT

Vascular calcification has traditionally been a passive process. However, in the last years, it has been proven 
to be an actively regulated biological process that is associated with crystallization of hydroxyapatite in the 
extracellular matrix and in cells of the media (VCm) or intima (VCi) of the arterial wall. Corresponding to 
bone mineralization, different pro and anti-calcifying mechanisms play an active role in mineral deposition 
in vascular cells. Evidence from clinical observations, animal models, and molecular studies suggest 
factors that regulate bone cell differentiation and mineralization, including fetuin A, BMP-2, matrix gla 
protein, osteopontin, osteoprotegerin, and inorganic pyrophosphate are used as biomarkers of vascular 
calcification. Under normal conditions, there is a balance between all calcification promoters and inhibitors, 
and it is possible that each pathological condition such as age, diabetes, dyslipidemia and hypertension, 
disrupts the balance with its own approach. The initiating factors and clinical consequences depend on 
the underlying disease state and the location of the calcification. Thereby, the pathogenesis of vascular 
calcification is a complex mechanism and not completely clear. On the other hand, diagnosis of the calcified 
arterial injury depends up on functional characteristics and imaging methods. In this article, the current 
knowledge of molecular and cellular mechanism, risk factors, biomarkers, and methods of detection of 
vascular calcification were reviewed.
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Introduction
Calcium is the most common element in bone, and 99% of the 

total body calcium is in bone in the form of a calcium phosphate 
crystalline structure called hydroxyapatite [Ca10[PO4]6[OH]2] [1]. 
Calcium is also found outside of bone in a variety of tissues, broadly 
termed extra-skeletal calcification. In these sites, the calcium 
can be in multiple forms- including hydroxyapatite, magnesium 
whitlockite, and amorphous calcium phosphate [2]. In vertebrates, all 
extracellular body fluids are supersaturated with respect to calcium 
and phosphate, resulting in a tendency for spontaneous calcium 
phosphate precipitation, which is often expressed as the calcium 3 
inorganic phosphate product [3]. Vascular mineralization is a process 
in which mineral is pathologically deposited in blood vessels, mainly 
in large elastic and muscular arteries such as the aorta, coronaries, 
and carotid and peripheral arteries [4-7]. Arterial calcification can 
occur in both intimal (VCi) and medial layers (VCm). The two forms of 
vascular calcification are distinct in their morphology and pathology 
[8]. Intimal calcification is exclusively associated with atherosclerosis 
and morphologically appears as punctate and disorganized mineral 
deposition in the arterial wall intima. Intimal calcification forms an 
important part of atherosclerotic plaques, which constitute VSMCs, 
macrophages, lipid, connective tissue, and necrotic debris [9]. Intimal 
calcification is ubiquitously associated with atheroma, can be used 
as a surrogate marker of atherosclerosis [10,11], and is predictive 
of future cardiovascular events [12,13]. Calcification had been 
thought to occur late in the disease course. Non-contrast computed 

tomography (CT) is the most sensitive method to quantify vascular 
calcification, although it measures total vessel calcium content and 
does not distinguish between intimal and medial mineralization.

However, the wider consensus is that calcification in coronary 
arteries in the general population (non-diabetic and non-chronic 
kidney disease) predominantly affects the intima [14,15]. In contrast, 
the medial layer may also be affected, leading to thickening of the medial 
layer of larger elastic arteries resulting in arteriosclerosis of smaller 
elastic arteries classically described as Mönckeberg’s calcification, or 
medial calcinosis [16,17]. VCm confirmed by histology were observed 
in large elastic type arteries (ascending aorta), medium sized visceral 
and kidney arteries, and small transitional arteries (coronary, 
temporal, uterine, ovarian, parathyroid, mammary gland, and other) 
with diameter of at least 0.5 mm [18,19]. The four stages of lesion 
progression distinguish the extent and severity of Mönckeberg’s 
calcification (Table 1) [20-22]. In stage 1, calcifications appear 
on haematoxylin–eosin (H&E) staining as irregular blue or violet 
deposits embedded within the media [23]. On a high-resolution light 
microscopy using H&E, Elastica-van-Gieson, von Kossa, or Alizarin- 
staining deposits consisting of fine granulations, which increase in 
size and become confluent, are revealed. Both intra- and extracellular 
deposits are present. Intracellular deposits are in vascular smooth 
muscle cells (VSMCs); extracellular deposits are largely associated 
with damaged and fractured elastic fibres embedded within the 
extracellular matrix. In muscular and transitional arteries, with H&E-
staining granular calcifications develop alongside the internal elastic 
membrane (IEM) and nearby VSMC.

Table 1: Stages of medial calcifications and histological aspects.

Stage Histological aspects of vascular calcifications; MMS type

|
Granular calcifications alongside the internal elastic membrane

Calcification nearby vascular smooth muscle cells

II
Calcifications increasing in size and becoming confluent Solid plates distorting the media spanning up to the incomplete circumference

Association of subendothelial hyperplasia in the intima

III
Calcifications distorting the media spanning the entire circumference

Association of subendothelial hyperplasia in the intima

IV Calcifications and foci of bone formation (osseous metaplasia)

 In experience, the involvement of the IEM is common. These bands 
of calcium-rich deposits may thicken, becoming solid plates extending 
deep into the inner layer of the media. With further progression of 
the disease calcifications may distort the junctions of the innermost 
and outermost layers of the media, spanning up to three quadrants of 
the cross section (stage 2) or it may involve the entire circumference 
(stage 3). In stages 2 and 3, large conglomerates of calcifications may 
form solid plates or sheaths, progressively distorting the architecture 
of the media; intrusions upon the intima are then common [24].

In the absence of atherosclerotic lesions, the intima shows a 
subendothelial hyperplasia. In stage 4 of VC m foci of bone formation 
within the arterial media may be found, calcifications may undergo 
osseous metaplasia giving rise to true bony trabeculae. These structures 
delineate true medullary spaces harbouring haematopoietic cells 
interspersed with adipocytes [25]. In the arterial wall, calcification 
deposits associated with VCm may be perceived as foreign bodies and 
induce granuloma formation within the media; these structures often 
contain multinucleated giant cells. Other inflammatory components 
such as foam cells, lymphocytes, and mast cells may also be present. 
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In advanced stages, large calcifications may induce secondary changes 
in the intima such as subendothelial hyperplasia characterized by an 
increase in cellularity (e.g., myofibroblasts, fibroblasts, fibrocytes) 
and ulcerations characterized by infiltrations of the intima or even 
protrusions into the lumen.

 It should be noted that VCm lesions do not spontaneously regress, 
and the clinical complications may vary according to the site and the 
amount of calcification. This disease of small vessels is also more 
common in patients with diabetes, renal failure and advanced aging 
[26]. The clinical manifestations of vascular calcification depend on 
the location within the arterial wall and the tissue perfused [27]. 
Intimal, atherosclerotic calcification can lead to myocardial infarction 
from stenosis and acute thrombus, or ischemia in both coronary and 
peripheral arteries. Medial or circumferential calcification can lead to 
reduced compliance due to arterial stiffening, resulting in an impaired 
vasodilation during ischemia that, in theory could lead to arrhythmias 
and sudden death. With medial calcification (arteriosclerosis) of the 
aorta, there will be increased pulse wave velocity, elevated pulse 
pressure, and systolic hypertension. Lastly, calcification of the 
arterioles of the skin and other organs can lead to calciphylaxis and 
ischemic gut [28]. Therefore, coronary calcium quantified by non-
contrast CT can be taken as a measure of intimal calcification in the 
general population [14,15]. Numerous studies have investigated the 
association of cardiovascular risk with mVC in the general population 
as well as in diabetic, hypertensive and ESRD patients [29-31]. These 
studies have established in the general population, the amount 
of vascular calcification, as measured and quantified by multi-
slice computed tomography, is an important predictor of all-cause 
mortality, vascular complications, and myocardial infarction [32].

 On the epidemiological scenario, vascular calcification 
increases with age, atherosclerosis, renal failure, diabetes mellitus, 
hypercholesterolemia, osteoporosis, obesity, smoking, menopause, 
and lack of physical exercise [33,34]. Calcification of the aorta may 
affect 65% of people in a general population with a mean age of 60 
years and correlates with coronary calcification identified by multi-
detector computed tomography, with a positive predictive value to 
increase cardiovascular morbidity and mortality in asymptomatic 
patients at intermediate risk [35]. Additionally, calcification of 
the abdominal aorta is associated with increased cardiovascular 
mortality, even when adjusted for age [35]. Conversely, calcification of 
the coronary arteries is associated with a greater risk of myocardial 
infarction and with increased incidence of adverse events during 
percutaneous and surgical myocardial revascularization [36]. Aortic 
valve sclerosis has a 40% prevalence in octogenarian patients [34], 
and initiates the process of calcific aortic valve stenosis, in which 
mineralization of the cusp has a pathophysiological mechanism like 
vascular calcification [37]. Calcific aortic valve stenosis is a predictor 
of cardiovascular risk in the elderly [38]. In opposition to control 
valves, calcified aortic valves express more alkaline phosphatase and 

matrix metalloproteinase 2 [39]. Despite the calcified degeneration 
of the aortic valve being associated with atherosclerosis and its 
risk factors, studies that used statins to treat patients with aortic 
valve stenosis did not demonstrate decreased aortic valve stenosis 
progression [40].

Calcification Promoters and Inhibitors
Calcification Inhibitors

Under normal conditions blood vessel cells express mineralization-
inhibiting molecules [41]. The loss of their expression, as happens 
in CKD, causes what is known as “loss of natural inhibition”, giving 
rise to spontaneous calcification and increased mortality [41]. A list 
with these calcification inhibiting molecules has been drawn up after 
mutation analysis on mice, including among others:

Fibroblast Growth Factor-23 (FGF-23): FGF-23 is an 
approximately 30 kDA protein released by bone that requires the 
presence of the cofactor Klotho for its classical effects [42]. FGF-23 
promotes phosphate excretion by reducing its proximal reabsorption 
by reducing the expression of NPT2a and NPT2c mRNA, sodium/
phosphate transporters [43]. FGF-23 also decreases conversion 
of calcidiol into its active form by reducing 1α-hydroxylase activity 
[44]. Thereby, gastrointestinal absorption of calcium and phosphate 
is reduced. In parathyroid glands, FGF-23 decreases PTH secretion 
and parathyroid cell proliferation [45]. FGF-23 null mice develop 
hypercalcitriolemia and VC [42]. Although the mechanistic link 
remains to be explained, FGF-23 may serve as a novel risk marker for 
the cardiovascular mortality in CKD [44]. In patients with coronary 
artery disease (CAD), the same independent link between FGF-23 and 
mortality has been demonstrated [46]. In contrast to FGF-23, Klotho 
excess has never been shown to be noxious [47]. Interestingly, Klotho 
levels are up regulated by vitamin D receptor agonists (calcitriol or 
paricalcitol) in CKD mice submitted to a high phosphate diet. These 
mice show half less calcification than those who did not receive 
therapy. Phosphaturia is increased whereas phosphatemia and FGF-23 
levels are lowered [48]. In contrast, vascular Klotho deficiency favors 
the development of arterial calcification and mediates resistance to 
beneficial vascular effects of FGF-23 [47].

Fetuin-A (FET-A): Fet-A is a serum 59-kDa glycoprotein that 
inhibits ectopic vascular calcification [41] and produced by the liver 
that possess a systemic action [49,50]. It is a powerful inhibitor of 
hydroxyapatite formation, reducing the formation of crystals in in 
vitro solutions containing calcium and phosphorus without affecting 
those that are already formed [41,51]. Mice that are deficient in 
this protein develop extensive calcifications in soft tissue such as 
the myocardium, kidneys, tongue, and skin [52]. Fet-A is thought 
to inhibit calcification by binding early calcium phosphate crystals 
and by inhibiting crystal growth and mineral deposition [42]. This 
could be facilitated by the formation of large calciprotein particles 
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[51,53]. Indeed, the accumulation of naked calcium phosphate 
crystals is responsible for extraosseous calcification and causes 
inflammation. These crystals are usually digested by the cells of the 
reticuloendothelial system such as macrophages. In contact with 
the crystals, macrophages secrete proinflammatory cytokines and 
undergo more apoptosis [42]. The formation of fetuin-A calciprotein 
particles (CPP) facilitates the clearance of these crystals and thereby 
reduces their negative impact. Fet-A likely plays a very important role 
in the stabilization of these complexes and reduces the inflammatory 
response [42]. Fet-A binds and sequesters insoluble mineral nuclei, 
forming soluble colloidal CPP, thereby inhibiting crystal growth and 
aggregation [42]. Macrophages secrete less cytokines and undergo 
less apoptosis phenomenon compared to reactions caused by naked 
crystals. This property of Fet-A to decrease inflammation may be 
influenced by the phosphorylation degree of the glycoprotein [54]. In 
these studies, lower serum Fet-A concentrations have been associated 
with increases in calcification scores, arterial stiffness, mortality and 
incidence of cardiovascular events [55-58].

Osteopontin (OPN): Osteopontin (OPN) is a phosphoprotein that 
is usually found in mineralized tissue such as bones and teeth [41,59]. 
It inhibits mineralization by blocking hydroxyapatite formation and 
activating osteoclast function [60]. Although it is not found in normal 
arteries, its expression is detected in atherosclerotic plaques and 
calcified calcified vessels. OPN knock-out mice do not develop VC 
but, when these mice are bred with MGP knock-out mice, the VCs are 
more important than in simple MGP knock-out mice [61]. OPN must 
be phosphorylated to act as a calcification inhibitor [42,62]. OPN 
inhibits mineralization of VSMC by binding to the mineralized crystal 
surface [63]. On the contrary to the fully phosphorylated OPN, cleaved 
OPN could act as a proinflammatory cytokine and a proangiogenic 
factor facilitating vascular mineralization [60,64]. The possibility 
that OPN could serve as a calcification serum marker is controversial 
[42]. Berezin et al showed that OPN was a good predictor of coronary 
calcification in type two diabetes mellitus patients [65]. Tousilis et 
al found a positive association between OPN and arterial stiffness 
in coronary artery disease [66]. Indeed, the discrepancy between 
the different studies may perhaps be explained by the differences in 
patient populations. It is thought OPN plays a key role in inflammatory 
process [42]. Its relationship with diseases related to inflammation 
such as atherosclerosis, obesity and autoimmune diseases has already 
been shown [67-69]. It has also been suggested that hyperglycemia 
could up-regulate OPN and thereby lead to VSMCs proliferation [70].

Osteoprotegerin [O]: Osteoprotegerin [OPG] is a member of the 
tumour necrosis factor receptor family that has been identified as a 
regulator of bone resorption [71]. OPG is produced by many tissues, 
including the cardiovascular system, lungs, kidney and immune system 
[72]. OPG is a regulatory factor produced by bone marrow derived 
stromal cells [42]. OPG plays a pivotal role in the regulation of the bone 

turnover, inhibiting osteoclast differentiation and acting like a decoy 
receptor for the receptor activator of NF-КB ligand (RANKL system) 
[73]. It interferes with the interaction between RANK (expressed by 
osteoclast-like cells) and RANKL (expressed by osteoblast-like cells). 
OPG is also thought to inhibit alkaline phosphatase activity [74]. OPG 
levels are significantly higher in CKD patients, in relation with the 
severity of renal failure. Although OPG is known to impede osteoclast 
differentiation in bone, OPG is usually considered as a protective 
factor against VC as it blocks the bone remodeling process in the 
vascular tissue [42]. OPG is also a neutralizer of the pro-apoptotic 
actions of TRAIL (TNF-related apoptosis-inducing ligand), which 
strongly activates vascular cells apoptosis [75]. Apoptotic bodies can 
also lead to mineralization. In support of that, it has been observed 
that OPG deficient mice do develop both severe aortic calcifications 
and osteoporosis [76,77]. Interestingly, OPG seems to be a marker of 
VC onset rather than a severity or progression predictor [42,78].

Osteocalcin (OC): OC, a vitamin-K dependent matrix protein that 
inhibits calcium salt precipitation in vitro [79], shows a strong affinity 
for hydroxyapatite [42]. OC has been found in calcified atherosclerotic 
plaques and calcified aortic valves [80]. It was generally thought 
that OC inhibits crystal growth [81] and limits bone formation [82]. 
Nonetheless, its utility as serum marker is still discussed in conflicting 
studies. Aoki, et al. [83] did not show any relationship between OC 
and VC in type 2 diabetes mellitus patients whereas Kim, et al. [84] 
found an inverse correlation between OC and Agatston calcification 
score in Asian women, even after adjusting for age [42]. To define if 
OC can be used as a diagnostic or a screening tool, the role of OC in the 
pathogenesis of VC clearly remains to be clarified.

Pyrophosphate (PPi): PPi is a small molecule made of two 
phosphate ions [42]. It acts as a calcification inhibitor by inhibiting 
hydroxyapatite crystal formation [85]. Once again, knock-out mice 
(in fact, knock-out mice for a precursor) develop VCs [86]. Absence 
of PPi would promote VSMC differentiation but the mechanism is not 
fully understood [87,88]. O’Neill, et al. demonstrated the negative 
association between PPi and VC in CKD [89]. Although the short half-
life of PPi limits the possibility for improving VC by bolus injections, 
daily peritoneal dialysis achieved with a solution which contains 
PPi in CKD mouse model do succeed in inhibiting calcification [90]. 
O’Neill et al demonstrated that daily intraperitoneal injections in rats 
could also reduce both incidence and amount of calcification [91]. PPi 
has been shown to inhibit mineralization on rat aortic VSMCs cultures 
too [92]. Furthermore, biphosphonates, non-hydrolysable analogs of 
PPi, have also proved their ability to inhibit aortic calcifications in 
experimental renal failure rats. Calcification was stopped in cultures 
of rat aortas as well as in vivo model [42]. It supports the idea that 
biphosphonates have direct effects on VC, independent of bone [93], 
maybe via a down regulation of Notch1-RBP-Jk signaling pathway and 
MsX2 gene induction [94]. ATP, which is a polyphosphate associated 
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with nucleoside, might also act as calcium phosphate deposition 
inhibitor, not only as the source of PPi but also as a direct inhibitor 
[95]. Even if PPi seems to be a promising marker, its determination 
has been performed in a single center only and the transferability to 
other centers should be validated.

Matrix Gla Protein (MGP): MGP is a vitamin K, 14-kDa 
γ-carboxylated protein expressed by chondrocytes, VSMCs, 
endothelial cells and fibroblasts [42]. Its role as a calcification inhibitor 
has been illustrated by MGP knock-out mice who develop extensive 
arterial calcifications [96,97]. In 2002, Moe et al demonstrated a 
correlation between vascular MGP expression and the calcification 
of epigastric arteries in dialysis patients [98,99]. MGP-deficiency in 
humans leads to Keutel syndrome, a rare genetic disease hallmarked 
by abnormal soft tissue calcification [96]. MGP binds calcium crystals, 
inhibits crystal growth, and plays a role in the normal phenotype 
of VSMCs in preventing the osteoblastic differentiation [100,101]. 
MGP also binds and inactivates a pro-mineralization factor, bone 
morphogenetic protein-2 (BMP-2) [102]. Among other effects, BMP-
2 promotes osteogenic conversion of VSMCs via MSX2 transcription 
factor [42]. MGP could also protect mineral nucleation sites on elastin 
and thereby prevent spontaneous calcification of the elastic laminae 
[42]. In support of that, the irregular calcification of the thoracic and 
abdominal aorta segments in MGP −/− mice correlates with the local 
variations of the elastin content [96]. Parallel to this study, other 
authors hypothesized a mineralization process by size exclusion, in 
which MGP proves to be essential to prevent mineralization within 
fibrils [42]. 

Calcification Activators

There are studies that speculate that, as well as hyperphosphataemia 
and hypercalcaemia, there are substances present in the blood serum 
of patients with CKD capable of stimulating calcification [103]. Bovine 
VSMC in the presence of uraemic serum increases the expression 
of calcification-related proteins. Many uraemic factors have been 
identified that can induce osteogenic genes, transforming osteoblasts 
and secreting some bone matrix proteins in the walls of blood vessels 
and soft tissue. Some of these factors are tumour necrosis factor 
(TNF) [104], inflammatory cytokines [105], fibronectin [106], type-I 
collagen [106] and 25-hydroxycholesterol [107]. These uraemic 
serum substances stimulate the expression of molecules essential to 
vesicular calcification.

Alkaline Phosphatase: Alkaline phosphatase (ALP) is one of the 
osteoblastic phenotype markers and is considered essential in the 
vascular calcification process [41] t has been detected in vascular 
and heart valve calcifications. ALP expressed on the surface of cells 
can act on phosphate liberators, releasing inorganic phosphate [108] 
Inflammatory cytokines and vitamin D induce its up-regulation and 
mineralization [109].

Core-Binding Factor Alpha 1: Core-binding factor alpha 1 
(Cbfa1) is the main regulator of bone cell differentiation [41]. fa1-
deficient mice have problems with cartilage formation and bone 
mineralisation [110]. acts as a transcription factor that accelerates the 
expression of important osteoblast lineage genes such as osteocalcin, 
osteopontin, ALP or type-I collagen [111]. s expression is up regulated 
by phosphate43 and uraemic toxins [103].

Bone Morphogenetic Protein – 2 (BMP-2): Bone morphogenic 
proteins (BMP) are a group of, at least, 30 proteins that receive their 
name from their osteoinductive properties [41]. Bone morphogenetic 
proteins (BMPs) belong to a subdivision of TGF-β like growth factors 
family. BMPs regulate growth, differentiation, and development in the 
embryo as well as during tissue remodeling processes in the adult 
organism. BMP-2 is an important molecule iVC [he regulation of bone 
formation as well as in VC [41,42]. In bone, it promotes osteoblast 
differentiation and mineralization [112]. Inhibition of BMP-2 inhibits 
osteoblast differentiation and bone formation in vivo and in vitro 
[113] and protects against atherosclerosis and VC [114]. They act by 
binding to a heterodimeric system of transmembrane receptors (BMP-
1 and BMP-2 receptor) that trimerises upon binding. The binding of a 
BMP to its specific type II receptor results in the type 1 receptor being 
activated. This causes phosphorylation and nuclear translocation of 
the Smad transcription factors thus modifying the transcription rate 
of target genes [115]. They then induce ectopic bone formation [116].

Sclerostin: Sclerostin is an osteocyte-specific glycoprotein and 
is considered as a potent inhibitor of bone formation [117,118]. 
It inhibits specific co-receptors needed for β-catenin-dependant 
signaling activation [119]. This pathway is involved in osteoblast-
mediated bone formation [120]. It is thought that sclerostin plays 
a role in bone mechanosensibilisation [42]. When bone undergoes 
a substantial strain, sclerostin production would be decreased and 
bone could thus increase its formation in response to mechanical 
stress [121]. As β-catenin belongs to Wnt cascade signaling and 
as Wnt pathway is thought to be implicated in development of 
VC, it is interesting to investigate a potential association between 
sclerostin levels and VCs [42]. In non-CKD patients, some studies 
have demonstrated a positive association between sclerostin levels 
and VC [122,123] whereas in other ones, there was not a significant 
correlation between the two parameters [124,125]. 

Rankl: RANKL (also known as OPGL) is a protein consisting of 
316 amino acids with a molecular weight of 38kD. Its expression is 
also modulated by several cytokines, glucocorticoids and PTH [126]. 
RANKL is produced by osteoblast lineage cells and activated T cells. It 
promotes osteoclast formation, fusion, differentiation, activation and 
survival, leading to increased bone resorption and bone loss [127]. 
RANKL stimulates its specific receptor RANK, which is expressed in 
fewer cells such as progenitor cells and mature osteoclasts, activated 
T cells and dendritic cells [128-130]. The activation of RANK by 
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RANKL triggers the NF-ΚB intracellular signalling cascade. The final 
stage of RANK activation is the NK-κB translocation into the nucleus, 
which can take place by the classical or alternative pathway [41]. 
Both pathways are regulated by their kinases which are, respectively, 
IKK‚ and IKKα. The NK-κB translocation to the nucleus modulates 
the expression of different genes, e.g., BMP4 [131]. The biological 
effects of OPG are the opposite of RANKL-mediated effects, since OPG 
acts as a soluble inhibitor that prevents RANKL interaction and the 
subsequent stimulation of its RANK receptor [132]. Many trials have 
shown that VC as well as arterial stiffness and cardiovascular events 
are inversely related to serum RANKL [133-135] and positively 
related to serum OPG [136-138].

Risk Factors for Vascular Calcification
The risk factors for VC are divided into traditional: involving 

advanced age, hypertension, diabetes, smoking, dyslipidemia, and 
others; and the non-traditional ones: including inflammation, 
oxidative stress, and mineral and bone disorders (MBD) of CKD, 
among other factors [139].

Age

Age is the strongest predictor of coronary artery disease [140] 
but multiple other clinical risk factors have been implicated in the 
pathogenesis of arterial calcification. Coronary artery calcification 
is also more prevalent and more severe among CKD patients than 
in the general population, and studies in CKD patients offer insight 
into the pathogenesis. In patients not yet on dialysis, over 50% have 
coronary artery calcification [141] whereas 70–90% of prevalent 
dialysis patients have significant coronary artery calcification 
[142,143]. Histologic studies comparing dialysis patients to non-CKD 
patients who died of a coronary event showed that dialysis patients 
had more calcification in the atheromatous plaques, but not more 
plaque. Dialysis patients also had a thicker medial layer [144]. Studies 
evaluating distal segments of the coronary arteries found medial 
calcification adjacent to the internal elastic lamina in dialysis patients 
[14] and in patients with advanced CKD [15]. Moe et al had found 
isolated medial calcification in the absence of intimal calcification in 
the inferior epigastric artery of patients undergoing a renal transplant 
[98]. Thus, calcification can occur both in intimal and medial arterial 
layers and in different vascular beds. In a study of 4544 patients, 
the presence of calcification in the thoracic aorta, carotids and iliac 
arteries were associated with all-cause mortality with hazard ratios of 
2.1, 1.6, and 1.67, respectively, whereas coronary artery calcification 
was associated with a hazard ratio of 3.4 for cardiovascular mortality 
[145]. At the present time, it appears that there may be different 
initiating factors in different vascular beds and in the intima and 
media, but a common downstream process of de-differentiation to an 
osteoblast like phenotype. 

Hypertension

Hypertension is associated with vascular remodelling and 
arteriosclerosis. In clinical studies, hypertension is not a commonly 
cited risk factor for calcification, perhaps because most subjects 
with calcification have hypertension as a clinical manifestation of the 
arteriosclerosis. The renin-angiotensin system is known to be a major 
pathogenic factor in VSMC apoptosis, growth, and differentiation, and 
therefore it likely plays a role in calcification [146]. Armstrong et al 
fed rabbits an atherogenic diet with high dose vitamin D to induce 
calcification along the internal elastic lamina and the media layer. 
There was upregulation of BMP-2 and down regulation of alpha-
smooth muscle actin suggesting a dedifferentiation from a vascular 
smooth muscle cell phenotype to an osteoblast like phenotype. 
Furthermore, calcified arteries had upregulation of angiotensin 
1 receptor and treatment with an angiotensin receptor blocker 
prevented the calcification [147]. In contrast, in 5/6th nephrectomized 
rats (a model of CKD), treatment with enalapril improved myocardial 
hypertrophy and progression of renal disease but had no effect on 
vascular calcification [148]. In a rat model of arterial calcification 
induced by intramuscular administration of vitamin D plus oral 
nicotine (VDN), increased calcium content of arteries was associated 
with increased levels of angiotensin II and adlosterone in the tissue; 
treatment with captopril or spironolactone reduced the calcification 
[149]. Thus, the renin-angiotensin and aldosterone pathway appear 
to play a role in arterial calcification. Whether this is due to the 
reduction of underlying remodelling (arteriosclerosis), or a direct 
inhibition of the osteogenic transformation will require additional 
studies.

Diabetes

Patients with diabetes had increased calcification compared 
to non-diabetic patients and there was increased expression in 
the medial layer of bone matrix proteins in the arteries such as 
osteopontin, type I collagen and alkaline phosphatase [150]. In vitro, 
there is a study that found VSMC incubated with high glucose led to 
an increase in the expression of the osteoblast transcription factor 
RUNX2, BMP-2 and osteocalcin and enhanced calcification in bovine 
VSMC. The protein kinase C signaling pathway was involved in this 
high glucose-induced expression of RUNX2 and bone matrix proteins 
[150]. Another group found that when fed high fat diet, the Ldlr−/− 
diabetic mouse develops hyperglycemia, dyslipidemia and aortic 
calcification with concomitant upregulation of aortic BMP2 and Msx2 
gene expression [151]. Increased glucose increased the BMP-2/Msx2-
Wnt pathway, leading to an osteogenic phenotype in a subset of the 
myofibroblasts; inhibition of the BMP-2 pathway reduced arterial 
calcification [152]. Interestingly, the location of BMP2 and BMP4 
differed in diabetic aortas in that BMP-4 was found in the endothelium 
and BMP2 throughout the vascular wall [152]. These results suggest 
that the increased vascular calcification in diabetes is at least partially 
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due to the direct effects of hyperglycemia on transforming the VSMC 
to osteoblast like phenotype via multiple mechanisms.

Dyslipidemia

Although clinically the role of lipids in vascular calcification 
is unclear, during osteogenic differentiation, calcifying vascular 
cells (CVCs, a clone of VSMC that readily calcify) accumulate not 
only minerals but also lipids such as triglycerides [153]. In vitro, 
HDL inhibits the osteogenic differentiation pathway [153]. In CVCs, 
stearate, compared to other fatty acids, promoted mineralization 
whereas inhibition of acetyl-CoA carboxylase or acyl-CoA synthetase 
reduced mineralization [154]. In these same CVC, n-3 unsaturated 
fatty acids play a protective role through a p38-MAPK (mitogen-
activated protein kinase) and PPARγ (peroxisome proliferator 
activated receptor gamma) dependent mechanism [155]. Finally, 
oxidized lipids such as oxysterols and oxidized phospholipids illicit 
procalcific effects in vascular cells as detailed below [156]. Thus, 
dyslipidemia, rather than elevated LDL cholesterol appears to be a 
major causative factor in vascular calcification.

Inflammation

Inflammation is a known non-traditional risk factor for 
atherosclerosis and vascular disease in the normal population and in 
CKD and is associated with increased mortality [157]. Both CRP [158] 
and inflammatory cytokines [159] are associated with increased 
coronary artery calcification in patients with CKD. Interestingly, 
osteogenesis is associated with local inflammation and macrophage 
infiltration in atherosclerosis in ApoE−/− mice as revealed by 
molecular imaging in vivo [160]. Tumor necrosis factor alpha can 
induce mineralization of calcifying vascular cells in vitro [104] and 
co-culture of these cells with monocyte/ macrophages (the source of 
most cytokines) can accelerate mineralization [161]. In human VSMC, 
the phosphatidylinositol 3-kinase (PI3K)/Akt pathway may inhibit 
inflammation induced calcification, perhaps by mediating alkaline 
phosphatase which is a ‘marker’ of osteoblast phenotype but also 
a potent inhibitor of a naturally occurring inhibitor of calcification, 
pyrophosphate [162]. Cytokine stimulation of alkaline phosphatase 
from VSMCs probably plays an important role also in calcification 
associated with diabetes, since the TNF-α inhibitor infliximab was 
shown to reduce the osteogenic phenotype of VSMC and the extent 
of medial calcification in LDLR−/− diabetic mice, without reducing 
obesity, hypercholesterolemia, and hyperglycemia [151].

Oxidative Stress

CKD is a state of increased oxidative stress due to impaired 
antioxidative mechanisms [163]. Elevations in asymmetric 
dimethylarginine, a naturally occurring inhibitor of NO synthase, 
are associated with increased intima-medial thickness in the carotid 
arteries, concentric left ventricular hypertrophy, and mortality in 
dialysis patients [164]. In a rat model of CKD, the antioxidant Tempol 

inhibited vascular calcification by reducing oxidative stress and 
inhibiting osteogenic transdifferentiation of vascular smooth muscle 
cells [165]. In the general population, there is growing evidence 
indicates that there is a correlation between oxidative stress and 
the development of vascular calcification [166-168]. Macrophages, 
endothelial cells, and smooth muscle cells produce reactive oxygen 
species such as hydrogen peroxide and superoxide anion in response 
to several stimuli. The free radical nitric oxide (NO) is generated 
from the endothelium from L -arginine by the enzyme NO synthase 
and leads to production of hydroxyl or peroxyl radicals. When VSMC 
are treated with β-glycerophosphate or uremic serum for 24 h, the 
production of H2O2 and early expression of NADPH oxidase sub-unit 
p22(phox) are increased. The elevated oxidative stress was associated 
with increased expression of RUNX2 and alkaline phosphatase and 
calcification of VSMC [166]. An important contributor to oxidative 
stress in atherosclerotic lesions is the formation of hydrogen 
peroxide from various sources in vascular cells [37]. A recent study 
by Byon et al [168] demonstrated that H2O2 induces a switch of 
VSMC from contractile to osteogenic phenotype associated with 
an increased expression of RUNX2 and calcification in VSMC. 
Furthermore, inhibition of H2O2-activated AKT signaling pathways 
blocked increased expression of RUNX2 and VSMC calcification 
[168]. A similar study has also demonstrated that advanced oxidation 
protein products [AOPPs] induce vascular calcification by promoting 
osteoblast differentiation of human vascular smooth muscle cells via 
the ERK signaling pathway [167]. In a rabbit model of atherogenesis 
fed high dose vitamin D, there was increased oxidative stress and 
aortic valve (AV) calcification/stenosis. The latter could be abrogated 
by the antioxidant lipoic acid [37]. Lipid oxidation products have direct 
effects on both bone forming and bone-resorbing cells. Oxidized LDL 
directly inhibits differentiation of osteoblasts [156] while directly 
inducing differentiation of osteoclasts [169]. Oxidized lipids also 
regulate osteoclastogenic cytokines produced by osteoblasts [170]. 
Thus, oxidative stress may be causative in vascular calcification, and 
may also explain the relationship between increased coronary artery 
calcification and osteoporosis found in both CKD and the general 
population [171].

Advanced Glycation End-Products (AGEs)

Proteins can be modified indirectly by reactive carbonyl 
compounds formed by auto-oxidation of carbohydrates and lipids, 
leading to eventual formation of AGEs. AGEs have been found in 
arterial and cardiac tissue as well as atherosclerotic lesions in dialysis 
patients [172]. Circulating AGEs such as pentosidine are elevated 
in patients on dialysis [173]. AGE-modified elastin and calcification 
has been found to co-localize in the aortic media of dialysis patients 
and binding of mineral to elastin is thought to be an important 
factor in the pathogenesis of medial calcification [174]. In cultured 
VSMC, AGEs can accelerate calcification of microvascular pericytes 
[175]. AGEs induced the expression of RUNX2 mRNA and alkaline 
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phosphatase activity and calcification [176]. The receptor for AGE 
(RAGE) is expressed in a variety of cells including VSMC [177] and 
these AGE mediated changes in VSMCs were partially attenuated by 
a neutralizing antibody to RAGE [178]. A study by Suga, et al. [179] 
demonstrated that activation of RAGE inhibited VSMC phenotypic 
gene expression and induces osteogenic differentiation of VSMC. This 
RAGE mediated effect was via Notch/Msx2 induction in VSMC. The 
results suggest that AGEs that accumulate in diabetes could elicit 
the osteoblastic differentiation of VSMCs, thereby contributing to 
vascular calcification via the RAGE pathway.

Abnormal Mineral Metabolism

6.8.1. Hyperphosphatemia: Abnormal mineral metabolism has 
been recognized as a nontraditional risk factor in the development 
of vascular calcification in CKD patients and is associated with 
increased mortality in both pre-dialysis and dialysis patients 
[27,180]. Hyperphosphatemia is associated with the prevalence and 
progression of vascular calcification in dialysis patients [181]. Several 
studies have demonstrated that the use of noncalcium-based as 
compared with calcium-based phosphate binders attenuated vascular 
calcification and mortality in dialysis patients [182,183]. In the general 
population, phosphorus levels in the upper quartile of the normal 
range are also associated with increased cardiovascular and all-cause 
mortality [184]. In vitro, phosphate increased the calcification of 
VSMC in dose-dependent manner [185]. High phosphate induced the 
loss of VSMC markers, such as smooth muscle (SM) α-actin and SM22α 
and increased the expression of the osteochondrogenic markers 
Runx2, osterix, osteopontin, and alkaline phosphatase [62,186]. A 
recent study has demonstrated that bovine VSMC incubated with 
calcification media (10 mM β-glycerolphosphate as a phosphate 
donor) generated cellular matrix vesicles that have high annexin II 
and VI content and the ability to mineralize extracellular matrix 
compared to that from bovine VSMC incubated without phosphate 
[187]. The matrix vesicles serve as nucleation sites for calcification, 
like the vesicles that bud from osteoblasts and hypertrophic 
chondrocytes in normal bone formation. Phosphate transport to cells 
is primarily mediated by sodium-dependent phosphate (NaPi) co-
transporters [188] and treatment with phosphonoformic acid (PFA, 
a competitive inhibitor of NaPi transport) inhibits phosphate uptake 
and VSMC osteochondrogenic differentiation [185]. 

The type III NaPi co-transporters, PiT-1, is highly expressed 
in VSMC [189] and the knockdown PiT-1 with siRNA suppressed 
phosphate induced calcification and blocked induction of the 
osteogenic markers Runx2/Cbfa1 and osteopontin [189]. However, 
our group has shown that bovine VSMCs incubated with pooled 
uremic sera from dialysis patients had increased calcification, above 
that induced by phosphorus but only when phosphorus is available 
[190]. The addition of PFA (inhibitor of NaPi transport) or levamisole 
(inhibitor of alkaline phosphatase) only partially inhibited uremic 

serum-induced osteopontin upregulation. The cyclic adenosine 
monophosphate (cAMP)/protein kinase A signaling pathway was 
involved in uremic serum-induced upregulation of RUNX2 and 
alkaline phosphatase [191]. High phosphate may also regulate matrix 
mineralization through elastin degradation. A soluble elastin-derived 
peptide can induce mineralization of human VSMCs in the presence 
of high phosphorus concentration [192]. Treatment of rat VSMC with 
elastin peptide induced the expression of elastin–laminin receptors 
along with increased expression of osteoblastic transcription factor 
RUNX2 and alkaline phosphatase [193]. TGF-β which is known to 
upregulate RUNX2 [194], had synergistic effect on VSMC phenotypic 
change. In a rat aortic ring model, treatment with high phosphate 
and warfarin increased matrix metalloproteinase 9 (MMP-9) activity 
followed by transforming growth factor-β (TGF-β) signaling and 
aortic calcification [195]. One recent study demonstrated that MMP-
2 and MMP-9 expression and activity are increased with progressive 
CKD, and blockade of MMP activity can inhibit arterial calcification 
[196]. This matrix degradation or alteration may be an initial step in 
calcification.

Hypercalcemia: There is an association with elevated serum 
calcium and the development of vascular calcification in the CKD 
population [180]. In addition, the use of calcium containing phosphate 
binders which induce positive calcium balance is associated with 
increased arterial calcification in the majority of studies [197]. In 
vitro, calcium alone can increase human VSMCs calcification [198]. 
Furthermore, calcium and phosphorus had synergistic roles in 
inducing mineralization of VSMC [199]. In an aorta ring culture model, 
elevated calcium was more potent than phosphorus to induce VSMC 
calcification for a given concentration of calcium and phosphorus, 
called the Ca × P product [200,201]. Calcium also stimulates VSMC 
matrix vesicle release [199]. Study by Chen et al have demonstrated 
that calcified VSMC derived cellular MV are enriched with annexin II 
and VI but with little fetuin-A [187]. Furthermore, blockade of annexin 
calcium channel activity with K201or the L-type calcium channel 
blocker verapamil significantly inhibit MV activity and the calcification 
of VSMC [202]. Shanahan and colleagues also demonstrated that 
blockade of intracellular calcium increase can inhibit MV calcification 
[1]. Abnormal mineral metabolism contributes to the development of 
vascular calcification by multiple mechanisms.

Fibroblast Growth Factor 23: The hormone fibroblast growth 
factor 23 (FGF-23) is predominately expressed in osteocytes and is 
involved in mineral homeostasis by inducing hyperphosphaturia, 
inhibiting calcitriol synthesis and inhibiting PTH secretion [203]. 
In the kidney it exerts its biological functions by binding to the 
FGF receptor in the presence of the cofactor Klotho [204]. Several 
studies have demonstrated that FGF-23 is associated with coronary 
artery and aortic vascular calcification in CKD and dialysis patients 
[205,206]. Targeted deletion of FGF-23 or Klotho in mice resulted 
in hyperphosphatemia and vascular calcification [204,207]. In 
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moderately uremic mice fed high-phosphate diets, elevated serum 
FGF-23 and osteopontin levels, but not serum phosphorus levels, 
were associated with extensive arterial-medial calcifications [208]. 
A recent study by Takei et al has demonstrated that the expression 
of stanniocalcin (STC) 2, a calcium/phosphate-regulating hormone, 
is increased and colocalized in calcified lesions of FGF-23 or Klotho 
null mice [209]. Although the mechanism by which FGF-23 affects 
vascular calcification is not clear at present, these data suggest that 
another mechanism by which phosphate affects vascular calcification 
may be through phosphorus-mediated elevation of FGF-23 levels.

Molecular and Cellular Mechanism of Arterial 
Calcification

Occurrence of vascular calcification (VC) has been discovered 
in the “Iceman” who lived 5000 years ago [210] and scientists had 
already paid attention to this phenomenon and to its relationship 
with renal disease in the 19th century [211]. Traditionally, two 
major forms of ectopic [pathologic] calcifications were distinguished; 
dystrophic refers to VC occurring in damaged tissues while metastatic 
was associated with systemic disorders of calcium and phosphate 

metabolism; these descriptions reflect the differences between 
vascular ossifications [active process] and petrifications [passive 
process] described by Virchow [212]. Initially VC was considered to 
be a passive process, the result of Ca2+ and phosphate ions exceeding 
solubility in tissue fluid, thereby inducing the precipitation and 
deposition of hydroxyapatite crystals [213]; however, VC is now 
considered as an active process that is complex, actively regulated 
via a variety of molecular signalling pathways and associated with 
crystallization of hydroxyapatite in the extracellular matrix and in 
cells of the media (VCm) or intima (VCi) of the arterial wall by involving 
the differentiation of macrophages and vascular smooth muscle cells 
(VSMCs) into osteoclast-like cell [214-216]. While considerable 
progress elucidating the signalling pathways regulating VC formation 
has been achieved, the exact molecular basis of VC remains elusive 
[217,218]. Within coming new research data, the already large 
number of molecular mechanisms suggested to contribute to VC 
formation continues to grow. The mechanism of arterial calcification 
is complex, but multiple investigators agree that the first step appears 
to be de-differentiation or transformation of vascular smooth muscle 
cells (VSMC) to an osteoblast/chondrocytic phenotype (Figure 1). 

Figure 1:  Schematic diagram depicting multiple mechanisms leading to vascular calcification.
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VSMC originate from a similar mesenchymal stem cell 
as osteoblasts, the latter occurring with up-regulation of the 
transcription factor core binding factor alpha-1 (Cbfa-1) now called 
Runt-related transcription factor 2 (RUNX2) or msh homeobox 2 
(MSX-2). These cells then do what a normal osteoblast does: secrete 
matrix proteins [98]. The signals that induce this transformation are 
multiple and once the matrix is laid down, these cells then mineralize 
the matrix through the secretion of matrix vesicles [187], or through 
apoptosis [219]. Phosphorus and calcium increase the mineralizing 
potential of these matrix vesicles [187,202]. It appears that while 
deposition of hydroxyapatite represents the resulting commonality 
of VC, different initiating and propagating molecular mechanisms, as 
well as diverse crystalline compositions of calcium apatite crystals 
may be present in various forms of VC [220-222]. The underlying 
pathophysiological mechanisms resulting in VC can be broadly 
described as: genetic predisposition certainly plays an important role 
in the genesis of this phenomenon [213]. According to Rutsch et al, 40 
– 50% of cases of coronary calcification can be attributed to genetics 
[223]. Genes ENPP1 and NT5E are respectively implicated in infancy 
and idiopathic VC. The first one encodes a protein which transforms 
ATP to adenosine and pyrophosphate (PPi, inhibitor of calcification) 
whereas the second one converts AMP into adenosine and inorganic 
phosphate (Pi, accelerator of mineralization) [4,214]. 

The VC phenotype caused by mutations in these genes underlines 
the role of PPi and Pi in pathogenesis. Mutations in ABCC6, a gene 
encoding a nucleoside-sensitive transporter, have also been linked to 
hereditary calcification [42]. Alternative action of ABCC6 may include 
deficient hepatic production of inhibitory factor of matrix Gla protein 
(MGP), an important inhibitor of calcification [224]. Another major 
mechanism of development of VCs is looks like process through 
which bone formation occurs (Figure 1) [215,225]. First, vascular 
smooth muscle cells (VSMCs) undergo osteogenic differentiation into 
phenotypically distinct osteoblast-like cells [103,225]. In the case of 
renal failure, phosphate plays a key role in this mechanism [226]. In 
vitro, high extracellular phosphate concentrations induce a rise in 
intracellular phosphate concentration which is actively mediated by 
Pit-1, a sodium dependent phosphate co-transporter [185,189]. This 
increasing phosphate concentration in the VSMC induces a phenotypic 
switch of VSMCs into osteoblast-like cells [185,186,225]. The 
protein Cfba1/Runx2 [core-binding factor subunit 1α/runt-related 
transcription factor 2] is a specific and indispensable transcriptional 
regulator for this osteoblastic differentiation. Its expression is also 
enhanced with high extracellular phosphate [100,185,186]. These 
“new” cells will express alkaline phosphatase (ALP), secrete, under 
the control of Cfba-1, bone-associated proteins (such as osteopontin 
[227], collagen type 1, osteoprotegerin, bone morphogenic protein-2 
and osteocalcin [228]) and release mineralization-competent MVs 
in the extracellular matrix [199,226]. VSMCs release MVs under 
normal physiological conditions and these MVs are protected from 

mineralization by the presence of calcification inhibitors [42]. Under 
pathological conditions, a combination of factors makes the MVs 
“mineralization competent” [229].

Moreover, an increase of intracellular phosphate level mediated 
by Na/Pi transporter is thought to induce VSMC apoptosis through an 
unclear process that possibly involves a disruption in mitochondrial 
metabolism [230]. Some studies suggest that apoptosis leads to 
calcification [231,232]. The MVs, in which proapoptotic factor BAX 
(BCL2-associated X protein) have been identified [233], may be 
remnants of apoptotic cells. As MVs have the capacity to concentrate 
and crystallize calcium, apoptosis could be a key regulator of VC 
[230]. More recently, a different point of view has emerged according 
to which phenotypically distinct osteoblast-like cells might originate 
from stem cells rather than VSMCs [42]. A new mechanism called 
“Circulating cell theory”, suggesting an active role for circulating cells 
arising from sources such as bone marrow, has been postulated to 
contribute towards VC. It is well known that the extracellular fluid is 
a metastable soup about calcium and phosphate concentrations and 
that active inhibitors of calcification must be present, both circulating 
and locally, to prevent the spontaneous formation of apatite: a 
situation that certainly applies to the CKD population [23]. The active 
inhibition process involves vascular smooth muscle cells and several 
proteins, including some that are vitamin K-dependent. Under the 
influence of chemo-attractants [released by damaged endothelium 
for instance], these bone marker-positive cells may home to diseased 
arteries. Under pathologic conditions such as an imbalance between 
promoters and inhibitors of VC, this population may further undergo 
osteogenic differentiation in the lesions, which could promote vessel 
mineralization [42,234]. Another recent study has also claimed that 
multipotent vascular stem cells (MVSC) present in blood vessel wall 
might differentiate into osteoblast-like cells [235].

Nevertheless, this point of view is still very controversial. 
Although the role of phosphate is well established in osteoblastic 
differentiation process, many other factors can influence this 
conversion and accurate causal mechanisms remained not completely 
understood. Under normal conditions, VSMCs produce endogenous 
inhibitors of calcification such as matrix Gla protein (MGP), 
osteopontin, osteoprotegerin and pyrophosphate [6]. A long-term 
exposure of VSMCs to a variety of stresses can overwhelm the action 
of these inhibitors and induce differentiation [229]. Among these 
chronic stresses, ionic disorders (especially hyperphosphatemia 
and hypercalcemia) are incriminated but inflammation, hormonal 
perturbation, metabolic disorders, and oxidative stress can also lead 
to VC. Oxidative stress in VSMCs, generated by hyperlipidemia and 
oxidized lipoproteins or uremic milieu [166], causes the expression 
of runx2[168], osterix and govers Wnt signaling [236], leading to 
osteogenic differentiation. Inflammatory cytokines, such as TNF-α, 
can also induce calcification via Msx2/Wnt/β-catenin pathway [237]. 
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In support of that, calcium deposits colocalize with inflammatory 
cells in vitro [161] and in vivo [160]. Moreover, it has been suggested 
that mineral crystals may themselves be pro-inflammatory, creating a 
vicious cycle of inflammation and calcification [220,238]. The receptor 
for advanced glycation end products (RAGE) endogenously expressed 
in endothelial cells and its ligands (in which S100 family proteins are 
found), are also known to be involved in atherosclerotic formation 
and VC [42]. It has been suggested that galectin-3 and RAGE modulate 
vascular osteogenesis in part via Wnt/β-catenin signaling [239]. 
Several trials have shown a raise in serum levels of S100/calgranulins 
in vascular disease [240,241]. Thereby, S100 proteins could be a 
potential biomarker and therapeutic target to develop [242]. 

Involved in the control of both parathyroid hormone (PTH) 
and calcitonin secretion, the calcium-sensing receptor (CaSR) is a G 
protein–coupled cell surface receptor that can sense extracellular 
calcium ions. Evidence have been provided to demonstrate that a 
decrease in the CaSR protein expression in the vasculature is directly 
involved in the development of VC [243,244]. It is of particular interest 
to note that calcimimetics, which are allosteric drug compounds 
that selectively target the CaSR, decrease VC at least in part through 
local control of the CaSR expression in VSMC [245,246]. However, 
so far, the mechanism whereby the CaSR exert its protective effect 
remains largely unknown. Hormones have pleiotropic effects on 
calcific vasculopathy. For example, the adipose-derived factor, leptin, 
promotes VC in vitro [247] and in vivo [248]. Adiponectin-deficient 
mice have increased vascular calcification [249]. The influence 
of PTH is part of bone turnover process. A disruption between 
promoters and inhibitors can also generate VC. Moreover, similar to 
bone formation, there might a balance between VC and its resorption. 
Indeed, monocytes and macrophages contained in the calcified wall 
can differentiate into an osteoclast-like phenotype and counteracts 
the action of VSMCs that have undergone osteoblast differentiation 
[250]. Hyperphosphatemia would disadvantage osteoclast phenotype 
by down-regulating RANK ligand-induced signalling [251] but this is 
not clear whether osteoclast-like cells can really counteract VC or 
solely witness vascular remodelling process. All these modifications 
will favour for an optimal microenvironment for hydroxyapatite 
formation and calcification. Similar osteogenic differentiation is also 
observed, in vivo, in animal and human uremic models [98,103,186].

Clinical Assessment Methods of Vascular Calcification
There are several methods to assess the amount of arterial 

calcification: conventional radiography, dual-energy X-ray 
absorptiometry (DXA), multi-slice computer tomography (MSCT), 
electron beam computer tomography [EBCT], magnet resonance 
imaging [MRI], ultrasound, intravascular ultrasound (IVUS) and 
optical coherence tomography (OCT) [252]. Unfortunately, except for 
intravascular ultrasound, none of these techniques can distinguish 
intimal from medial calcification [140,182]. In clinical practice, there 

are also other established methods for measuring arterial stiffness 
(AS) with functional measurements and diverse imaging methods. 
However, the direct prediction of mVC is not easy for all these methods.

Functional (Hemodynamic) Measurements

A clinically easily applicable method to assess mVC is the 
measurement of the ankle-/brachial index (ABI) with a high ABI (> 
1.3) serves as marker of VC [253]. Conversely, the estimation of local 
stiffness is an established only by direct measurement of parameters 
strongly linked to stiffness. The pulse wave velocity (PWV) is a robust 
and reliable parameter that is considered as gold standard for AS 
assessment. The determination of PWV, is a one of the simplest ways 
to estimate the level of AS, includes the measurements of the distance 
covered by the wave and the time required to cover the distance (PWV 
= distance/time delay). Basically, the regional PWV of each vessel in 
the body can be measured. However, aorta and its major branches 
represent the main sites of interest and has clinical relevance, because 
they contribute to the larger part of the arterial buffering function 
[254] and responsible for most of the pathophysiological sequels of 
increased stiffness. Carotid-femoral PWV is very suitable and easily 
applicable in the clinic, as it assesses the aortoiliac pathway. There 
are also established methods for the measurement of the PWV in the 
upper [brachial PWV] and lower limbs (femoro-tibial PWV) [255]. The 
carotid-femoral PWV has predictive value for cardiovascular events 
in several epidemiologic studies in different populations [256-258] 
while PWV measurements outside the aortic track demonstrated no 
correlation with cardiovascular events [259].

Another method used to assess local stiffness is the measurement 
of arterial distensibility using ultrasound or echotracking devices for 
the detection of diameter changes of the vessel during systole and 
diastole [260]. The method’s limitations are its dependence on high 
spatial resolution and the high degree of technical expertise required. 
Furthermore, only superficial arteries, such as the common carotid or 
femoral artery, are examined because its depth penetration is limited. 
The determination of pulse pressure (PP) and the augmentation 
index (Aix) is another method to assess AS. In case of stiff arteries, 
the reflected wave arrives earlier in the central arteries and augments 
the systolic pressure. As a result, the PP and AIx ((first systolic 
peak-second systolic peak)/ (pulse pressure increase)) [252]. The 
limitation of PP and AIx determination is their dependency on other 
conditions such as heart rate, ventricular contractility, duration 
and pattern of ventricular ejection, reflectance point and measured 
vessel segment. It has been elegantly shown by Scuteri, et al. [261] 
that PWV and therefore AS increase with age independently of blood 
pressure development. Furthermore, patients with ESRD on regular 
haemodialysis usually have higher PWV in comparison with healthy 
controls [262], and the PWV increase over time is higher than in the 
healthy population. Therefore, PWV seems to be a marker for time-
dependent ageing processes in the vascular system and less sufficient 
as specific indicator for AS [255,263]. 
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Imaging Methods

Conventional radiography is a semi-qualitative method with 
several established scores. The abdominal aortic calcification 
score was proposed by Kauppila, et al. [264] to assess the extent of 
calcification of the abdominal aorta in front of the lumbar vertebrae on 
a lateral X-ray of the lumbar spine. However, conventional radiography 
of peripheral vessels may be a useful marker to measure Vamp [265]. 
Conventional radiography can indirectly indicate the presence of VCm 
by a ‘tram track’ calcification pattern in comparison with a ‘patchy’ 
pattern typically when atherosclerotic plaques are calcified [266,267]. 
Linear ‘tram-tracks’ are a typical appearance of VCm on conventional 
radiography [268], whereas a ‘patchy’ pattern typically suggesting 
atherosclerosis [266,267]. However, the sensitivity and specificity 
of conventional radiographs for detecting VCm or discrimination 
between VCm and intimal calcification remain uncertain [269,270]. 
Dual-energy X-ray absorptiometry is also a well-established method 
usually used for the measurement of bone mineral density but can also 
be used for simultaneous semiquantitative assessment of VC [271]. 
Both MSCT and EBCT are also very sensitive and precise imaging 
techniques for the detection and quantification of calcification [272]. 
MRI is, in general, a superior method for imaging soft tissue while it 
is not suitable for reliable assessment of VC, due to very short calcium 
echo time [273]. During endovascular interventions, IVUS [274] and 
OCT [275] can be also used to detect and quantify the amount of VC. 
Although OCT provides higher resolution than IVUS, its penetration 
depth is not sufficient to evaluate the entire medial layer. In the 
clinical setting, multidetector computed tomography is often used and 
generates a quantitative calcium score [276,277], which is a potent 
predictor for cardiovascular events [278]. Most studies identified 
intimal calcification as predictor of a vulnerable plaque phenotype, 
the punctated “spotty calcification” [277,279].

Circulating Biomarkers

A comprehensive approach including gathering of exact patient 
history and performing hemodynamic measurements and imaging 
studies is needed to determine the presence of arteriosclerosis, 
to quantify its amount and to provide discrimination from 
atherosclerosis. Currently, the latter issue is not still difficult as 
hemodynamic measurements nor imaging studies can certainly 
exactly distinguish between intimal and medial calcification. 
Therefore, new specific probes imaging microcalcification can 
provide a platform to study the earliest events associated with VC at 
the molecular and cellular level. The use of circulating biomarkers 
such as MGP for detecting or screening VC is an attractive possibility. 
Vitamin K-dependent proteins have been associated with the earliest 
calcification areas in the plaque [280]. It was the uncarboxylated 
form of MGP that strongly correlated with both medial and intimal 
calcification [280,281]. By measuring circulating MGP isoforms it was 
shown that most of the healthy population have sub-optimal levels of 

vascular vitamin K [282,283]. Preliminary data confirmed MGP are 
associated with aspects of cardiovascular disease as patients with 
high VC scores display high levels of inactive MGP, especially dialysis 
patients [284-286].

Conclusion 
Vascular calcification is recognized as an active cellular process 

that occurs in response to metabolic insults that is intimately entwined 
with aging, abnormal mineral metabolism, and other related chronic 
diseases (i.e., DM, CKD). Within vascular microenvironment itself, a 
dense and interconnected network of calcification inhibitors and 
promoters were highlighted. Under normal conditions, there is a 
balance between all these parameters. Currently, vascular calcification 
is regulated by a complex pathophysiological mechanism, primarily 
triggered when there is an imbalance between inhibitors and 
promoters, in favour of osteogenic proteins and transcription factors 
synthesis, in detriment of bone reabsorption mediators. According 
to active theory, VSMCs undergo differentiation into osteoblast-like 
cells, in great part because of an increased intracellular phosphate 
concentration that is likely mediated by the co-transporter Pit-1 in 
response to extracellular hyperphosphatemia. Other risk factors 
such as advanced age, smoking, inflammation, oxidative stress, 
mineral and bone disorders (MBD) are also known to be associated 
to VSMCs conversion. As evidenced by different clinical observations, 
animal models, and molecular studies, the exact molecular and 
cellular mechanism of vascular calcification is still far from being 
fully elucidated. Thereby, the challenge remains to understand which 
mechanisms are active and/or predominate under various disease 
states, and to develop effective therapeutic strategies that may prevent 
and potentially reverse vascular calcification. Correspondingly, 
qualities that would be appreciated for selecting a good vascular 
calcification biomarker depend on its capacities to achieve clinical 
goals, particularly its ability to select high risk patients for further 
investigation, to make a reliable calcification assessment, to provide a 
prognostic, to help in treatment choice or to follow up the treatment 
efficiency. However, functional characteristics and imaging methods 
are commonly used for the diagnosis of the calcified arterial injury.
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