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ABSTRACT

The bone and immune cells all share the same microenvironment, interact with each other, share common 
signaling pathways, collaborate, performing the functions of an “osteoimmune system”. The same 
cytokines may have different and often opposite effects depending on the specific environment in which 
they function, the maturation stage of the target cells and/or the influence of other cytokines. Through 
osteoimmunology, the intimate mechanisms in the pathogenesis of many rheumatological diseases such as 
Rheumatoid arthritis, axSpA, autoinflammatory diseases, osteonecrosis, osteoarthrosis, osteoporosis are 
clarified. Osteoimmunology is a conceptual framework for decoding the complex language through which 
the immune system and bone communicate. This review summarizes the data accumulated to date on the 
interactions between the immune and bone systems of the human organism and reveals the bidirectionality 
of these interactions and their role in the pathogenesis of rheumatic joint and bone diseases.
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Introduction: the «Embrace» of the Immune and 
Bone Systems

The skeletal system and the adaptive immune system developed 
simultaneously during the evolution of vertebrates. The implication 
is that certain components of the skeletal system are essential for 
the proper operation of the immune system (Boehm 2012). About 
385 million years ago, the aquatic vertebrates moved to land and the 
skeletal system evolved to maintain the motor activity in terrestrial 
conditions. The adaptive immune system first appears in cartilaginous 
fish. The nuclear factor receptor activator ligand - κB (RANKL) is 
known from cartilaginous fish (OrthoDB database). The osteoclasts 
first appear in bony fish. Active bone metabolism, regulated by 
calciotropic hormones such as vitamin D and parathyroid hormone, 
has been known since the advent of amphibians. Immunoglobulin 
classes and lymph nodes are found only in terrestrial animals. The 
bone marrow serves as a site for communication and collaboration 
between bone and immune cells, working together to carry out 
crucial tasks such as strengthening the body, regulating mineral 

metabolism, and facilitating hematopoiesis (the production of blood 
cells) (Morrison and Scadden 2014). The concept of osteoimmunology 
originated from initial research demonstrating that immune cells 
secrete factors that activate osteoclasts (Horton et al. 1972; Mundy 
et al. 1974). Similar to other multifunctional cytokines in the TNF 
superfamily, the influence of RANKL extends beyond its role in 
regulating bone remodeling. It also plays a part in immune responses 
and the formation of immune organs. The RANKL/RANK pathway 
plays a critical role in the formation of important immune organs 
in mammals, including the thymus and lymph nodes. Additionally, 
the bone marrow houses hematopoietic stem cells (HSCs) [1]. 
The bone marrow contains hematopoietic stem cells (HSCs), 
myeloid and lymphoid progenitors, as well as mature immune cells, 
neutrophils, macrophages and T lymphocytes. Bone and immune 
cells share the same microenvironment and interact with each 
other, cooperating, performing the functions of an «osteoimmune 
system». In 2000, the term «osteoimmunology» was proposed by 
Arron and Choi to emphasize the T-lymphocyte-controlled regulation 
of osteoclastogenesis in the context of rheumatoid arthritis. 
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Subsequently, it has become evident that the immune and skeletal 
systems are subject to shared regulation by a variety of cytokines, 
chemokines, transcription factors, and signaling molecules. In 
addition, the evidence suggests that bone cells reciprocally regulate 
immune cells and hematopoiesis [1].

Accumulated scientific evidence on the communication between 
immune and bone cells has led to a revised understanding of bone 
remodeling. This new model posits that the phases of bone resorption 
and formation, which are in a constant state of balance, are subject 
to precise immunological regulation [2]. The skeletal and immune 
systems are intricately interconnected through intricate networks 
that work together to maintain homeostasis. Bone is a constantly 
changing tissue comprised of bone proteins that are infused with 
mineral crystals and interwoven with bone cells such as osteocytes 
(OCs), osteoblasts (OBs), and osteoclasts (OCLs). The osteoblast, 
which derives from the mesenchymal stem cell (MSC), has the 
potential to differentiate into other cell types such as chondrocytes, 
bone marrow stromal cells, and adipocytes [3]. Osteoclasts (OCLs) 
are specialized myeloid cells with multiple nuclei that are responsible 
for breaking down mineralized bone tissue through the secretion 
of lysosomal enzymes like tartrate-resistant acid phosphatase 
(TRAP) and cathepsin K [4]. OCL originates from a progenitor cell 
in the bone marrow, which allows differentiation to «professional» 
antigen-presenting cell (APC), i.e. dendritic cell and macrophage. 
Based on that data, OCL can also be considered a specialized immune 
cell. Under normal circumstances, osteoblasts (OBs), osteoclasts 
(OCLs), and osteocytes (OCs) engage in continuous communication 
with one another to maintain optimal bone quality and quantity in 
a homeostatic manner. Osteoblasts (OBs) secrete various signaling 
molecules such as macrophage colony-stimulating factor (MCSF), 
RANKL, and other stimulatory factors to direct the differentiation 
of myeloid lineage progenitor cells into osteoclasts (OCLs) [5]. The 
receptor activator of nuclear factor Kappa B (RANK) and its ligand 
(RANKL), along with the nuclear factor of activated T-cell (NFATc1), 
are essential for the communication between osteoclasts (OCLs) and 
osteoblasts (OBs). The expressed on the osteoclast precursor RANK 
interacts with RANKL and forms the RANK-RANKL complex, which 
activates the Wnt signaling pathway, leading to the stimulation of 
maturation, differentiation and activation of osteoclasts and inhibits 
their apoptosis. The activated T cells produce RANKL, which activates 
OCL, which is not followed by activation of OB, i.e. bone formation did 
not follow witch is the so-called pathological remodeling.

Other potential inducers of RANKL are the pro-inflammatory 
cytokines: TNFα, IL 1, 6, 17, VEGF (vascular endothelial growth 
factor). This association between pro-inflammatory cytokines and 
osteoclast formation explains why cytokine-targeted therapy delays 
structural bone damage in IMIDs. It is worth noting that RANKL 
and RANK also have a significant impact on the development of 

the lactating mammary gland during pregnancy, highlighting their 
pleiotropic effects [6]. Additionally, osteocytes (OCs), which were 
once believed to solely regulate bone remodeling, are now known 
to regulate immune cells and form the «endosteal niche.» Both 
osteoblasts (OBs) and osteoclasts (OCLs) play a role in the formation 
of the endosteal niche, which mobilizes hematopoietic stem cells 
(HSCs) [7]. Studies have shown that RANKL, which is produced by 
osteocytes (OCs), contributes to increased osteoclastogenesis and 
bone loss, as observed in estrogen-deficient conditions. Additionally, 
there is evidence supporting a link between OCs and the immune 
system, as in vivo ablation of OCs has been found to result in severe 
lymphopenia, according to Sato and colleagues. The conversation 
the relationship between the immune system and bones works in 
both directions, indicating that immune cells can also be impacted 
by bone cells. OCL has been shown to regulate the HSC niche directly 
and indirectly through OB. First, OCLs can increase the mobilization 
of HSCs by secreting cathepsin K, an important protein for their 
function. As a result, HSCs enter the circulation. As is known, the 
differentiation of OCL strictly depends on the RANKL / RANK path 
[8,9]. Studies have demonstrated that OCL (osteoclasts) can control 
the HSC (hematopoietic stem cell) niche both directly and indirectly 
by interacting with the interaction between RANKL and RANK, 
which are expressed by OCL precursors, leads to the recruitment 
of TNFR-associated factors (TRAFs). These TRAFs then trigger 
the differentiation of OCL by promoting the translocation of NF-kB 
to activated B and T cells. RANKL is also produced by activated T 
lymphocytes. The significance of RANKL in the context of immunology 
is highlighted by the fact that mice deficient in RANKL not only 
exhibit a bone phenotype characterized by osteopetrosis due to the 
absence of osteoclasts, but also display immunological abnormalities 
such as impaired lymphocyte development and lack of lymph node 
organogenesis.

Shared Signal Pathways
Cytokines and transcription factors, which act as mediators, 

are involved in both inflammation and bone metabolism. RANKL 
is expressed by immune system cells, particularly activated T and 
B lymp. TNF-α, IL-1, IL-6, and IL-17 are inflammatory cytokines 
that play a critical role in acute and chronic inflammation. These 
cytokines are potent stimulators of bone resorption. T-lymphocytes 
present in the bone marrow are important immune cells that play a 
crucial role in regulating bone remodeling. Inflammatory cytokines 
produced by activated T lymphocytes induce bone resorption 
during inflammatory diseases or conditions characterized by low-
grade systemic inflammation. T helper (Th17) cells are involved in 
stimulating bone resorption and have a significant impact on bone 
loss observed in inflammatory diseases such as psoriasis, rheumatoid 
arthritis, periodontitis, Crohn’s disease, and chronic ulcerative colitis. 
Th17 cells promote osteoclastogenesis by producing cytokines such 
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as IL-17, RANKL, TNF-α, IL-1, and IL-6, in addition to low levels of 
IFN-γ. IL-17 triggers the release of RANKL from both osteoblasts 
(OBs) and osteoclasts (OCs), thereby activating RANK signaling 
in osteoclasts (OCLs). Conversely, T regulatory (Treg) cells inhibit 
osteoclastogenesis and promote bone formation. The osteoclast-
associated receptor (OSCAR) not only facilitates interactions 
between osteoblasts (OB) and osteoclasts (OCL), but it also plays a 
role in regulating both adaptive and innate immunity [10]. OSCAR, 
initially identified as a regulator of osteoclast differentiation and an 
immunomodulatory mediator in bone, is believed to be involved in 
cellular activation and inflammation in atherosclerosis [11]. TNF-α 
promotes the expression of OSCAR and other receptors on the surface 
of monocytoid peripheral blood cells that play a crucial role in the 
differentiation of osteoclasts (OCLs) [12]. Cytokines have inherent 
pleiotropic functions, and it is not surprising that the same cytokines 
may have different and even opposing effects depending on various 
factors such as the specific environment in which they operate, 
the stage of maturation of target cells, and the influence of other 
cytokines. It is seen that not only do immune system cells regulate 
bone remodeling, but also bone cells are able to affect the immune 
system [13-15].

Key Cellular and Humoral Participants in the Cross 
Communication Between the Immune System and 
the Bones

T cells are a key component of the adaptive immunity. The links 
between T cells and the bone biology are numerous: essentially all 
T cell subtypes are able to affect bone cells (mostly OCLs). However, 
the role of Th17 and T-reg cells is particularly important. Th17 cells 
are thought to be the majority of osteoclastogenesis-inducing T 
cells. These cells stimulate the expression of macrophage-colony-
stimulating factor (M-CSF) and RANKL in osteoblasts and stromal 
cells, resulting in the production of RANKL and TNF-α. Furthermore, 
they increase the expression of RANK in osteoclast precursor 
cells [16]. These characteristics make them potent inducers of 
osteoclastogenesis, which is why they have already been described 
as «players» in the bone lesions in RA [17] and multiple myeloma 
[18]. The role of T-reg cells in inhibiting osteoclastogenesis is well 
established. This is achieved through both soluble factor-mediated 
mechanisms as well as contact-mediated mechanisms [19]. Dendritic 
cells (DCs) are a type of antigen-presenting cells that play a crucial 
role in directing cell-mediated immunity towards appropriate 
targets with speed and accuracy while preventing autoimmunity 
[20]. Historically, the role of dendritic cells (DCs) in bone biology has 
been considered to be indirect, primarily through their interaction 
with T cells [21]. Later studies have shown that dendritic cells not 
only present antigens to T cells but also play a role in regulating the 
activity and balance of T cell subtypes through cytokine signaling 
[22]. The common myeloid origin of DCs and OCLs should not be 

overlooked. Neutrophils are also involved in bone biology, particularly 
in inflammation-induced bone loss [23]. Neutrophils are typically the 
first type of immune cell to migrate to the site of bone damage, where 
they release chemokines, cytokines, and other small molecules that 
act as immunomodulatory factors. The secretion of chemokines CCL2 
and CCL20 by neutrophils attracts Th17 cells, which contributes to 
bone loss. However, the absence of neutrophils can also result in bone 
loss due to the activation of IL-17-mediated local inflammation [24].

Activated neutrophils express RANKL at the site of inflammation, 
which leads to their active involvement in osteoclastogenesis. This 
process can increase juxta-articular osteoporosis associated with 
rheumatoid arthritis [25]. In summary, however, the role of neutrophils 
in osteoimmunology is not fully understood, the general consensus is 
that activated neutrophils are inducers of osteoclastogenesis, directly 
and indirectly. B-cells: B-cell development is regulated by various 
factors, including RANKL, OPG, IL-7, and CXCL12, which are secreted 
by bone marrow stromal cells and osteoblasts [26]. New research 
indicates that B cells not only rely on RANKL for their development, 
but they also produce RANKL and use it as an autocrine signaling 
molecule [27]. Natural killer (NK) cells: Natural killer (NK) cells 
participate in the regulation of bone homeostasis along with other 
lymphocytes. NK cells play a role in regulating bone homeostasis and 
are also involved in the pathogenesis of bone damage in rheumatoid 
arthritis by inducing osteoblast cell death [28]. NK cells have a dual 
role in RA-induced bone loss as they can induce OB cell death, making 
them a potential therapeutic target for reducing bone loss [29]. 
However, NK cells are also necessary for delaying RA progression, 
which raises doubts about the effectiveness of anti-NK therapy in RA. 
Inflammation and inflammatory factors: IFN-γ, produced by various 
immune system cells such as T and B cells, NK cells, monocytes/
macrophages, and dendritic cells, plays a crucial role in both innate 
and adaptive immunity as well as in the regulation of inflammation 
[30,31]. In bones, IFN-γ affects both OB and OCL. IFN-γ has a positive 
effect on OBs, which usually produce low levels of this cytokine. This 
is because IFN-γ can activate genes that are involved in osteoblast 
differentiation. IFN-γ has been found to have an inhibitory effect on 
the differentiation of osteoclasts (OCLs) by counteracting the effects 
of M-CSF on OCL precursors [31]. It does so by reducing the expression 
of c-fms receptor, which leads to a reduced number of pre-OCLs that 
are positive for RANK [32]. In addition, IFN- γ induces osteoclast 
apoptosis. The importance of IFN type I in bone homeostasis was 
underscored by the observation that mice deficient in type I-IFN-
receptor component (IFNAR1) spontaneously developed osteopenia 
accompanied by enhanced osteoclastogenesis [33].

Both types of interferons (IFNs) inhibit osteoclastogenesis 
through the activation of the signal transducer and activator of 
transcription 1 (STAT1) in the skeletal system [34]. In the skeletal 
system, both types of IFN inhibit osteoclastogenesis by STAT1. INF-γ 
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also inhibits the effect of PTH and IL-1 on stimulating OCL formation 
in bone marrow cultures [35]. INF-γ inhibits RANK signaling but 
does not directly inhibit bone resorption from mature OCLs [36]. It 
has been reported that INF-γ can also stimulate bone resorption by 
enhancing the production of RANKL and TNF-α in T lymphocytes [37]. 
Inflammatory cytokines, which are produced mainly by macrophages 
such as IL-1, TNF and IL-6, stimulate osteoclastogenesis. They are 
called osteoclastogenic cytokines because of their resorptive effect 
on the bone [38]. IL-1 stimulates TRAF6 (and therefore activates NF-
κB and MAPKs) and synergizes with RANKL to induce mature OCL. 
Activated T cells expressing RANKL have the potential to induce 
osteoclast differentiation by directly affecting osteoclast progenitor 
cells. T cells also secrete various anti-inflammatory cytokines such 
as IL-4, so the effects of T cells on the osteoclastogenesis depend on 
the balance between pro- and anti-inflammatory factors produced 
by them. For example, CD4 + T helper cell subgroups Th1 and 
Th2 produce IFN-γ and IL-4 with an anti-osteoclastogenic effect. 
Recently, researchers have been considering the role of T cells in 
non-inflammatory metabolic bone diseases and postmenopausal 
osteoporosis. TNF and other inflammatory cytokines not only cause 
local inflammation but also play a direct and indirect role in activating 
OCLs. Such osteoimmunological pleiotropy may explain the efficacy 
of RANKL-specific antibody not only in postmenopausal osteoporosis 
but in rheumatoid arthritis and also its preventive effect on the bone 
metastases [39]. TNF-α stimulates the formation of OCL and enhances 
the bone resorption in vivo [40-42]. The ability of TNF-α to stimulate 
OCL formation from osteoclast precursor is dependent on IL-1 [43], 
while TNF-α-induced osteolysis is dependent on M-CSF [44].

The results of studies with RANK-deficient mouse cell cultures 
show that TNF-α directly stimulates the formation of OCL, independent 
of RANK [45]. TNF-α also inhibits osteoblast differentiation and 
collagen synthesis [46-48]. In addition, TNF-α is highly proapoptotic 
to osteoblasts [49], possibly by signaling Fas-Fas ligand (FasL). Fas 
ligand (FasL), also known as CD95L or CD178, is a protein that is 
found on the surface of cells and belongs to the TNF family. When FasL 
binds to its receptor, it can induce a process called apoptosis, which is 
a type of programmed cell death. The normal bone development does 
not seem to be affected by TNF-α, as the absence of abnormal bone 
phenotypes has been observed in TNF receptor 1 and TNF receptor 
2. However, TNF-α can affect bone in inflammatory conditions. IL-7, 
which plays roles in B- and T-cell lymphopoiesis, also regulates the 
bone homeostasis [50]. The mechanisms by which IL-7 affects bone 
cells are controversial. The systemic application of IL-7 stimulates 
the creation of OCLs by boosting the production of cytokines that 
promote osteoclastogenesis in T cells [51]. IL-8 is a chemokine of the 
CXC family, which is produced by osteoclasts. It has been found to 
stimulate the process of osteoclastogenesis and bone resorption, and 
this effect is not dependent on the RANKL pathway [52,53]. Activated 

T and B lymphocytes produce IL-10, which has a direct inhibitory 
effect on the differentiation of osteoclasts and osteoblasts. IL-17 and 
IL-23 belong to a group of six cytokines called the IL-17 family, which 
are critical for the adaptive immune system’s response [54]. They are 
produced by a specific subset of CD4+ T lymphocytes called Th17, and 
they have a strong ability to promote the formation of osteoclasts that 
rely on IL-17 [55]. IL-17A promotes the development of osteoclasts 
in cultures that include both hematopoietic cells and osteoblasts, 
by inducing the production of prostaglandins and increasing the 
expression of RANKL [56]. IL-23 is linked to IL-12 in its effect, as 
both cytokines are critical for the differentiation and proliferation of 
Th17 cells, along with TGF-β and IL-6 [57]. IL-18, which belongs to 
the IL-1 superfamily, is found to be elevated in inflamed areas such 
as those affected by rheumatoid arthritis. While osteoblasts produce 
IL-18, it can inhibit the formation of osteoclasts through different 
mechanisms. This includes an increase in the expression of GM-CSF 
in T cells. IL-18 has been shown to stimulate the production of INF-γ 
in OB cultures in vitro. 

The inhibitory effect of IFN-γ on osteoclastogenesis is further 
enhanced by the presence of IL-12. Studies have demonstrated that 
IL-18 can increase the production of osteoprotegerin (OPG). The 
effects of IL-18 on osteoclastogenesis are indirect and mediated 
through its effects on T lymphocytes [58]. IL-13 and IL-4 decrease 
bone resorption that is stimulated by IL-1 by reducing the levels of 
prostaglandin and the activity of cyclooxygenase-2. Toll-like receptor 
stimulators (TLRs): TLRs (Toll-like receptors) play a crucial role in 
initiating innate immune responses and are prominently expressed 
on cells responsible for presenting antigens, such as macrophages 
and dendritic cells [59]. Since macrophages, dendritic cells, and OCLs 
have common progenitors, it is not surprising that TLRs are also found 
in the bone cells. Direct TLR signaling on OCL precursors, including 
TLR4, inhibits RANKL-mediated osteoclastogenesis [60], which seems 
controversial as bacterial infections cause inflammation by inducing 
proinflammatory cytokines in response to TLR ligands [60]. Although 
TLR stimulation inhibits osteoclast differentiation, TLR ligand treated 
OCL precursors retain pronounced phagocytic activity. Therefore, 
TLR stimulation of OCL precursors is likely to differentiate them into 
non-immune cells, such as mature OCLs. Cathepsin K is a cysteine 
protease identified in OCLs. Cathepsin K inhibition was recently 
reported to suppress not only osteoclastic bone resorption but also 
the autoimmune inflammation. Further studies revealed a role for 
cathepsin K in regulating Th17 differentiation by mediating TLR9 
activation of dendritic cells and the production of cytokines such as 
IL-6 and IL-23 [61]. This is another example of a molecule originally 
found in the bones that was later shown to play a role in regulating 
the immune system. Cathepsin K is a key osteoclast collagenase. 
The signal for OCL migration to the future site of resorption are the 
microfractures, as a result of which OCs matrix metalloproteases 
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enter the extracellular matrix of the bone. Cytokines such as RANKL, 
OPG, M-CSF and TGFα are released under the action of these 
metalloproteases. Specific products of matrix protein proteolysis 
by metalloproteases serve as signals for OCLs attachment. After 
the attachment, OCLs change their functional activity and switch to 
bone resorption. The primary enzyme involved in bone resorption 
is cathepsin K. Cathepsin K is expressed in pre-OCL, epithelium of 
bronchi, bile ducts and thyroid gland, chondrocytes and smooth 
muscle cells of the arteries affected by atherosclerosis. 

Cathepsin K is able to cleave many proteins: elastin, gelatin, 
osteopontin, osteonectin, collagen, aggrecan. A characteristic 
difference between cathepsin K and other proteases that only cleave 
collagen telopeptides is that it is also capable of cleaving 3-helix collagen 
[62]. In the field of osteoimmunology discovering of new molecules 
continues in recent years. This is the case with another bone mass 
regulator that has been discussed in the last few years: LipoCaliN-2 
(Lcn2). The protein, known as lipocalin, is connected with neutrophil 
gelatinase (NGAL) as it has the ability to attach to and stabilize the 
MMP9 factor, which is responsible for the movement of neutrophils 
out of the bloodstream and into tissues (extravasation). Furthermore, 
Lcn2 is upregulated during inflammation, and its function in 
inflammatory disorders still needs to be investigated. This molecule’s 
role in innate immunity is clear. In vitro mechanical overburden 
resulted in the upregulation of Lcn2 in osteoblasts, as demonstrated 
in a study conducted in 2009 [63]. It was unexpected that removing 
the production of Lcn2 genetically actually leads to a decrease in bone 
mass instead of an increase, as it was previously believed that Lcn2 
was detrimental to bone health. This paradoxical effect is thought 
to be caused by Lcn2 overexpression damaging osteoblasts and 
interfering with their energy balance, ultimately leading to osteoblast 
dysfunction [64]. Osteoimmunology clarifies the intimate mechanisms 
in the pathogenesis of various diseases such as rheumatoid arthritis 
[65], ax SpA, autoinflammatory diseases, osteonecrosis, recovery 
from bone fractures, myelodysplasia, leukemia, neoplasms, metabolic 
syndrome. The field of osteoimmunology provides a novel perspective 
for investigating bone-related disorders like osteoporosis (OP) and 
osteoarthritis (OA), which have not conventionally been recognized 
as inflammatory conditions [66]. Understanding the intricate 
communication between the immune [67-73] system and bones 
is crucial for identifying potential therapeutic targets in various 
rheumatic and non-rheumatic diseases that involve [74-82] similar 
mediators and signaling pathways [83-92]. This review summarizes 
the currently accumulated data on the mutual «embrace» of the 
immune and skeletal systems of the human body [93-102]. And as it is 
with any hug, there is a two-way interaction [103-116]. All this again 
tells us that when studying human health in depth, we must always 
strive to reveal the integrity and interconnectedness of the processes 
in the human body in health and disease [117-130].
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