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ABSTRACT

Vitamin D, a hormone synthesized in the skin by ultraviolet radiation, is regulating bone metabolism, but 
has many extra-skeletal actions as well. It has been suggested that vitamin D plays a significant role in 
the pathophysiology of cardiovascular diseases. Its involvement in anti-inflammatory and antioxidant 
mechanisms results in an inverse relationship between vitamin D levels and cardiometabolic risk, as shown 
by observational studies. Randomized controlled studies have shown that vitamin supplementation has 
decreased inflammatory and oxidative stress biomarkers. 
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Introduction
Vitamin D is traditionally known as the hormone involved in 

calcium and phosphorus metabolism, regulating bone homeostasis 
and health. However, it has been found to participate in several extra-
skeletal conditions, like cancer and cardiovascular diseases (CVD). 
During the last decade, there has been increasing evidence of the 
consequences of vitamin D deficiency in health, in skeletal and non-
skeletal clinical conditions, an issue that is controversial [1]. There are 
two known forms of vitamin D, vitamin D3 or cholecalciferol produced 
in the skin after exposure to ultraviolet radiation, and vitamin D2 or 
ergocalciferol found in plants and fungi. These two forms present 
certain structural similarities [2]. Cardiovascular diseases (CVD), i.e., 
hypertension, coronary heart disease, stroke, etc., are a major cause 

of increased mortality worldwide. Inflammation and oxidative stress 
seem to play a crucial role in the pathophysiology of CVD. Different 
researchers have suggested that there is an association between 
vitamin D deficiency and the onset of CVD, not being able to define the 
threshold that is the most appropriate for the prevention of CVD [3,4]. 
There are many mechanisms proposed for the involvement of vitamin 
D in the pathophysiology of CVD, among which are inflammation and 
oxidative stress [5]. The aim of the present review is to summarize all 
the existing data on the role of vitamin D in oxidative stress and CVDs. 

Vitamin D Levels and Metabolism

Vitamin D existing in the human body is either synthesized within 
the skin by ultraviolet radiation (about 90%) or is received by food, like 
fish (salmon, tuna, etc.), veal liver, egg yolk, mushrooms, shrimps, and 
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cod liver oil. In some counties, the enrichment of certain foods, such 
as cereals, dairy products, and margarine, with vitamin D is allowed. 
Vitamin D is absorbed mainly in the duodenum, and in the large 
intestine [6]. Another source of vitamin D is the dietary supplements 
received per os, either as multivitamin products containing 400-1000 
IU of vitamin D2 or as pure vitamin D3 supplements containing 400-
50,000 IU [7].

Vitamin D is synthesized by photolysis of 7-dihydro cholesterol 
by UV radiation (290-315 nm). The first compound synthesized 
is provitamin D3, which is then transformed into vitamin D3 or 
cholecalciferol [8]. Vitamin D3 is a pro-hormone, activated by the 
addition of two hydroxyl groups on the C25 and C1a, producing 
1,25(OH)2D3, with the help of the enzymes of the family of cytochrome 
P450 (CYP) [9]. The first hydroxylation takes place in the liver and 
25(OH)vitamin D3 [25(OH)D], the main circulating form of vitamin D, 
is produced. Bound to an α-globulin, the vitamin D- binding protein 
(VDBP), 25(OH)vitamin D3 is transferred to the kidneys where a 
second hydroxylation by 1α-hydroxylase takes place and 1,25(OH)2 

vitamin D3 [1,25(OH)2 D3], the most potent vitamin D metabolite, is 
produced. VDBP binds 25(OH)D with 10-100 higher affinity than that 
of 1,25(OH)2D3 [10].

According to the Endocrine Society, the optimal serum levels are 
advised to be above 30ng/mL, ideally between 40 and 60 ng/mL. 
Serum levels between 21 and 29 ng/mL are considered “insufficiency”, 
levels lower than 20 ng/mL are “deficiency”, and levels less than 
10 ng/mL are “extreme deficiency” [7]. However, the Institute of 
Medicine has reported the threshold of 20 ng/mL for physiologically 
optimal levels of vitamin D [11]. Intoxication of vitamin D is rarely 
reported. Increased exposure to the sun cannot result in intoxication 
if the excess of vitamin D is neutralized within the skin. The only way 
of intoxication is the consumption of large quantities of vitamin D for a 
long period of time, resulting in hypercalcemia and/or hypercalciuria 
and, possibly, kidney stones. On the other hand, insufficiency and 
deficiency of vitamin D have a high prevalence worldwide nowadays 
[12].

Vitamin D Biological Action

Vitamin D, like all steroid hormones, acts in the nucleus and on 
the surface of the cells, like all peptide hormones. Its nuclear receptor, 
vitamin D receptor (VDR) is connected to both the DNA and the 
ligand. It has been found in the gut, the bones, the kidneys, and in 
other organs not related to calcium metabolism, like immune cells, 
myocardiocytes, and other muscle cells, liver cells, prostate cells, etc. 
[13]. Vitamin D action on genes is rapid, enhancing the synthesis of 
proteins like osteocalcin and calcium-binding protein, and down-
regulating the synthesis of parathormone and cytokines, like IL-17 
[14].

The extra-DNA action of vitamin D is exerted via cytoplasmic 
membrane receptors (1,25 D3-MARRS or PDIA3) and secondary 
messengers (cAMP and kinases) that affect calcium channels and 
intracellular calcium concentration. This action takes place in tissues 
like pancreas, smooth muscle cells, the gut and monocytes, and 
regulates cell differentiation and function [15]. In small intestine, 
1,25(OH)2D3 increases calcium absorbance via increased expression 
of calcium channels, increased production of proteins, such as alkaline 
phosphatase and calmodulin, that help calcium enter the circulation 
[16]. The skeletal actions of vitamin D include increased bone 
absorption by osteoclasts and increased osteoclasts proliferation. 
Vitamin D also increases calcium reabsorption in distant renal tubules 
[17]. All these actions are exerted in response to low calcium serum 
levels [18,19].

Non-classical actions of 1,25(OH)2D3 include: 

i) Regulation of cell proliferation and differentiation, 

ii) Strengthening of epidermal barrier, 

iii) A inflammatory and immune compromising properties, 

iv) Role in reproduction, pregnancy, placenta integrity and fetal 
growth, 

v) Role in the development and proper function of central and 
peripheral nervous system, 

vi) Appetite reduction, 

vii) Regulation of metabolism and endocrine homeostasis, 

viii) Regulation of the cardiovascular system [20] and 

ix) Anti-carcinogenic action via genes’ activation or suppression 
in all stages of carcinogenesis [21]. 

Vitamin D and Cardiovascular Diseases 

Seasonal changes in blood pressure and the identification of 
VDR and 1a-hydroxylase in cardiomyocytes, in endothelial and 
vascular smooth muscle cells, implicate the involvement of vitamin 
D in cardiovascular diseases. Animal studies have provided proof 
that vitamin D signaling is necessary for cardiovascular integrity, 
especially for the regulation of vascular tone, as well as for anti-
fibrotic and anti-hypertrophic signaling in the heart. In specific, 
researchers have attributed seasonal cardiovascular events to low 
levels of 25(OH)D that was observed in winter [22]. Although there 
are many observational studies indicating a correlation between 
vitamin D deficiency and hypertension, atherosclerosis, and heart 
failure, they have failed to prove an aetiological relation between 
vitamin D supplementation and cardiovascular health [23]. Similarly, 
a study of 25,871 subjects failed to show favorable action of vitamin D 
on cardiovascular system [24,25]. 
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VDR, first identified in cardiovascular tissues in 1986 [26], is a 
member of the transcription factor superfamily of nuclear receptors 
and translocate to the nucleus regulating the transcription of target 
genes, after the stimuli of vitamin D [27]. Experimental models 
have shown that vitamin D has many cardiovascular actions, such 
as inhibiting hypertrophy, decreasing cardiomyocytes’ proliferation, 
increasing vascular smooth muscle cells’ proliferation, increasing 
the expression of vascular endothelial growth factor (VEGF) and 
inhibiting of the renin-angiotensin-aldosterone system (RAAS) and 
the release of natriuretic peptides [28]. VDR activation by calcitriol 
or its analogues may directly inhibit the expression of angiotensin 
I and local production of angiotensin II in cardiomyocytes, in renal 
arteries and in kidneys [29]. It seems that vitamin D is also involved 
in the pathophysiology of heart failure by regulating the expression 
of certain metalloproteinases and metalloproteinases inhibitors 
[30]. Moreover, vitamin D can also affect the cardiovascular system 
indirectly, by being involved in the pathophysiology of hypertension, 
dyslipidemia, and diabetes. Finally, there is increasing evidence 
implicating an anti-inflammatory role by inhibiting TNF-α and 
nuclear factor k-B and promoting IL-10 expression in cardiovascular 
disease [31].

Vitamin D is an Antioxidant and Anti-inflammatory Factor

Epidemiological data have shown a significant contribution 
of vitamin D to the maintenance of cardiovascular health [32]. The 
pathophysiology of cardiovascular events includes endothelial 
dysfunction, vascular injury, inflammation, oxidative stress, 
thrombosis and, finally, plaque rupture [33] a process enhanced by 
several modifiable and non-modifiable risk factors, such as obesity, 
hypertension, and insulin resistance [34,35]. Nitric oxide (NO), apart 
from being a vasodilation factor and acting as a neurotransmitter, it is 
a potent antioxidant factor as well. Several studies have shown that 
vitamin D can stimulate NO production by increasing endothelial NO 
synthase (eNOS) gene expression [36,37]. Moreover, vitamin D seems 
to increase the expression of antioxidant enzymes and to up-regulate 
the intracellular antioxidant pathway of the nuclear factor erythroid 
2-related factor 2 [38-40].

Vitamin D seems to reduce chronic inflammation, 
pathophysiologically involved in endothelial dysfunction, 
atherosclerosis, and CVD. Its anti-inflammatory actions include down-
regulation of NF-kB and STAT1/5-mediated signaling, with subsequent 
down-regulation of the production of anti-inflammatory cytokines, 
such as TNF-α, IL-1, IL-2β, etc. [41]. Moreover, binding of vitamin D 
to VDR results in the decrease of prostaglandin and cyclooxygenase 2 
production, reduction of metalloproteinase-9 (MMP-9) and increase 
in anti-inflammatory IL-10 production [42]. The threshold for 
vitamin D deficiency is set to favor bone metabolism and health [43]. 
It is, however, still unknown which levels of vitamin D are the optimal 
for maintaining cardiovascular health [44]. Randomized controlled 

trials have shown that vitamin D supplementation improves oxidative 
and inflammatory biomarkers, such as total antioxidant capacity, 
C-reactive protein, and glutathione, but has no effect to others like 
malondialdehyde and carbonyl group levels [43-47]. More studies 
are needed to address the certain vitamin D status necessary for CVD 
prevention and for the best cardiovascular benefit.

Conclusion
The involvement of vitamin D in the pathophysiology of CVD 

has been demonstrated by both observational and epidemiological 
studies. It seems to be significantly related to its anti-inflammatory 
and antioxidant properties. Vitamin D deficiency has been shown 
to be associated with greater CVD risk, but any possible etiological 
relation must be clarified. Vitamin D supplementation is considered 
beneficial for the reduction of oxidative and inflammatory parameters 
and for the prevention of CVD, but the optimal vitamin D status for the 
maximum cardiovascular benefit needs further investigation.
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