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ABSTRACT

Blood-based protein biomarkers predicting brain amyloid burden would have great utility for the 
enrichment of Alzheimer’s Disease (AD) clinical trials, including large-scale prevention trials. In this paper, 
we adopt data fusion to combine multiple high dimensional data sets upon which classification models are 
developed to predict amyloid burden as well as the clinical diagnosis. Specifically, non-parametric techniques 
are used to pre-select variables, and random forest and multinomial logistic regression techniques with 
LASSO penalty are performed to build classification models. We apply the proposed data fusion framework 
to the AIBL imaging cohort and demonstrate improvement of the clinical status classification accuracy. 
Furthermore, variable importance is evaluated to discover potential novel biomarkers associated with AD.
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Introduction
Alzheimer’s disease (AD) is the most common form of dementia in 

later life, affecting 1 in 8 people by the age of 65 years. The diagnosis 
of AD can only be confirmed, with certainty, by histologic examination 
of the brain tissue at autopsy. A key pathological hallmark of AD is 
the deposition of amyloid-β (Aβ) in the brain, and there is a strong 
association between brain amyloid burden and the risk of developing 
AD-like pathology. It is believed that Aβ accumulation precedes clinical 
presentation of cognitive impairment by many years [1], enabling 
detection of preclinical AD and promoting pre-symptomatic treatment 
of AD should a disease modifying treatment becomes available. In 
living patients, Aβ burden is determined either by cerebrospinal 
fluid (CSF) biomarkers or positron emission tomography (PET) 
with Aβ radiopharmaceuticals such as 11C-Pittsburgh compound B 
(PiB) [2]. Recent FDA approval of longer-lived 18F amyloid imaging 
radiopharmaceuticals could promote their use in clinical practice [3]. 
Amyloid PET scan allows a semi-quantitative in vivo assessment of Aβ 

deposition in the subject brains because its uptake in AD correlates 
with Aβ plaques measured neuropathologically in the same brains 
[4]. However, this approach is costly and is restricted to specialized 
centers. CSF sampling is invasive and there are no standardized 
methods to handle and analyze CSF biomarkers resulting in variability 
across different labs [5]. For cost-effective, simple, and non- invasive 
testing, blood-based biomarkers that predict brain amyloid burden 
would have great utility in identifying subjects at risk for AD. 

Previous studies have demonstrated that blood-based metabolites 
and autoantibodies have the potential to predict diagnosis of AD. 
The group at VTT identified signatures of lipids and small polar 
metabolites in plasma associated with the progression of mild 
cognitive impairment (MCI) to AD [6]. Using high-throughput antigen 
microarray from Life Technologies, a panel of IgG autoantibodies 
from human serum was shown to differentiate AD and MCI from 
healthy control [7,8]. The purpose of this study is to evaluate these 
metabolomics and autoantibody variables as well as to discover 
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potential novel biomarkers associated with AD using an independent 
cohort. It is important to simultaneously analyze different types of 
data sets specifically if the different kind of biological variables are 
measured on the same samples. Such an analysis enables a real 
understanding on the relationships between these different types 
of variables. Data fusion [9-11] refers to the combination of data 
originating from multiple sources and is used to improve decision tasks 
– such as classification, estimation, and prediction – and to provide 
a better understanding of the phenomena under consideration. The 
purpose of fusion is to optimize the total information content from 
multiple sources. [12] pointed out that total information content 
can be enhanced in the case of multiple sensors fusion because new 
sensors can be used to provide more data, and similar sensors can 
be added to provide more coverage or more confidence for observed 
data.

Class prediction with high-dimensional features is an important 
problem and has received a lot of attention in biological and medical 
studies. The task is to classify and predict the diagnostic category of a 
sample on the basis of its feature profile, which is challenging because 
there are usually a large number of features and a relatively small 
number of samples, and it is also important to identify which features 
contribute most to the classification. Our interests lie in integrating 
multiple high dimensional data sets and perform variable selection 
simultaneously. Some sparse associated integrative approaches have 
been applied to include a built-in selection procedure for feature 
selection in integration studies. The work presented in this paper 
proposes a framework for improving diagnosis of AD by data fusion 
and model fusion. Section 2 describes the methodologies that are 
used to pre-process data including missing value imputation and 
variable pre-selection, develop and assess classification model, and 
evaluate the variable importance. Section 3 demonstrates how the 
proposed framework works for the diagnosis of AD by combining both 
metabolome and IgG/IgM autoantibody variables, and conclusion and 
discussion are included in Section 4.

Methodology

Let  ( )1,2,..., ; 1, 2,...,i jX i N j P= =  denote the feature value for the  
thi   subject and the thj  variable, and  ( ) ( )1 2 1 2, ,..., , ,...,p NX X X X x x x= =

    
 

denote the feature matrix, where iX


  is the thj   variable vector 

and iX


  is the feature vector for the thi   subject. Also, let  

{ , 1,2,..., }iY y i N= =  be the response variable vector, where  

{1,2,..., }iY C∈  is the class status for the thi   subject. The following 
methods are adopted to impute missing data, pre-select variables, 
and build classification models.

Data Imputation

Missing values are imputed via the K-Nearest-Neighbor (KNN) 
algorithm [13]. For each target variable having at least one missing 
value, the   nearest neighbor variables are identified which have the 
smallest Euclidean distance than the others. The missing feature 
values in the target variable are imputed by using the averages of the 
non-missing entries from the   nearest neighbors. As a large number 
of variables causes much intense nearest-neighbor computations, the 
KNN imputation algorithm is combined with a recursive two-means 
clustering procedure, which recursively divide the variables into two 
smaller homogeneous groups till all groups have less than a specific 
number of variables, and the KNN imputation is performed separately 
within each variable group.

Variable Pre-selection

To avoid simultaneously using tens of thousands of variables and 
adding too much noise into the classification model development, 
methods are needed to pre-select a subset of more important 
variables. Significance Analysis of Microarrays (SAM) [14] has been 
widely used to determine the significance of gene expression changes 
between different biological states while accounting for the enormous 
number of gens. For a two-class response variable, i.e. 2C =  , both 
the t-statistic and Mann-Whitney-Wilcoxon statistic can be used to 
compute the score for each variable. A threshold is selected to ensure 
a specific False Discovery Rate (FDR) is achieved. Kruskal-Wallis test 
is an extension of Mann-Whitney-Wilcoxon test when there are more 
than two classes, i.e.,  2C > , which tests whether the feature values 
are from the same distribution or not. The p-values for testing all 
the variables are ordered, and those corresponding to the smallest 
p-values are considered as the most important values.

Random Forest for Classification

Random Forest [15] is a non-parametric approach that builds 
a large collection of de-correlated decision trees on bootstrapped 
samples and then averages them. Each time a split in a tree is 

considered, a random sample of  ( )m m p<  variables is chosen as 

split candidates from the full set of p  variables. For classification, a 
random forest obtains a class vote from each tree, and then classifies 
using majority vote. It is often useful to learn the relative importance 
or contribution of each variable in predicting the response. For 
each tree, the prediction error on the out-of-bag (OOB) samples 

is recorded. Then for a given variable 
jX  , the OOB samples are 

randomly permuted in jX   and the prediction error is recorded. The 

variable importance for jX   is defined as the difference between the 
perturbed and unperturbed error rate, averaged over all trees.
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Logistic Regression for Classification

The multinomial logistic regression model is specified in terms of   

1C −  logit transformation:

( )
( ) 0

|
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=
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  ( 1,2,...,i N=  and  1,2,..., 1c C= − ).

When N P<  , the 1L  LASSO (Least Absolute Shrinkage and 
Selection Operator) penalty [16] can be used for variable selection 
and shrinkage, which forces some of the coefficient estimates to be 
exactly equal to zero when the tuning parameter λ    is sufficiently 

large. The optimal tuning parameter  λ  is chosen such that the cross-
validation error is minimized. For  2C > , a grouped-LASSO penalty 
on all the coefficients for a particular variable is used, which makes 
them all be zero or nonzero together.

Cohort

Subjects included in this study were a subset from the Australian 
Imaging, Biomarker and Lifestyle Flagship Study of Aging (AIBL), 
which is a prospective, longitudinal study of aging, neuroimaging, 
biomarkers, lifestyle, and clinical and neuropsychological analysis, 
with a focus on early detection and lifestyle intervention. The dual 
center study recruits patients with an AD diagnosis, MCI, and healthy 
volunteers with the aim of identifying factors that lead to subsequent 
AD development. Additional specifics regarding subject recruitment, 
diagnosis, study design, details of blood collection and sample 
preparation have been previously described [17]. The PiB amyloid 
PET imaging methods have been previously reported [18]. 

Blood Biomarker Measurements

For metabolomic analysis, plasma samples were provided to 
VTT Technical Research Center of Finland (VTT). Methods for global 
lipidomics and global profiling of small polar metabolites have been 
previously described by VTT [6]. To identify autoantibody signatures, 
serum and plasma samples were provided to Life Technologies 
(Invitrogen) for the ProtoArray Immune Response Biomarker 
Profiling Service. The array contains over 9,000 unique human 
protein antigens [19]. Serum samples were used for detection of IgG 
autoantibodies to compare with a previously published report [7]. 
Plasma samples from the same patients were used for detection of 
IgM autoantibodies. 

Results
Data

A set of VTT metabolomic variables are measured on 197 
selected subjects, including 711 Polar metabolite variables and 790 
Lipid variables. A set of autoantibody variables are measured on 
242 selected subjects, including 9480 IgG variables and 9480 IgM 
variables. Merging the above two sets of variables leads to a master 
data set which includes 180 subjects (116 Healthy, 43 MCI and 21 
AD) and 20461 variables. A standardized uptake value ratio (SUVR) 
cutoff of 1.5 is used for the PiB-PET scans to divide subjects into two 
groups: PiB negative (PiB- with PiB SUVR<1.5) and PiB positive (PiB+ 
with PiB SUVR>1.5) with its distribution shown in (Table 1), where 
the genotype is defined as the Apolipoprotein E4 (APOE4) carrier 
status (E4- and E4+). Presence of the E4 allele has been identified to 
be a risk factor associated with AD [20]. The demographic variable 
summary is shown in (Table 2 & Figure 1). Log10 transformation 
is performed to the feature matrix, and the variables with only 
unique value are excluded. As the number of variables is large, the 
KNN imputation algorithm is combined with a recursive two-means 
clustering procedure, where   and a maximum group size of 1500 
variables is used.

Table 1: Response variable distribution.

(a)PiB SUVR class vs. genotype

PiB- PiB+

E4- 54 30

E4+ 37 59

Total 91 89

(b)Clinical status

Healthy MCI AD

116 43 21

Table 2: Demographic variable distribution.

(a)Gender

Female Male

89 91

(b)Genotype

E4- E4+

84 96
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Figure 1: Demographic variable summary.

PiB SUVR Classification Model

The Mann-Whitney-Wilcoxon statistic is used in the Significance 
Analysis of Microarrays (SAM), and the 200 most significant variables 
are pre-selected which ensures around 10% FDR.

The following three set of variables are used to develop the PiB 
SUVR classification model:

•	 Model 1: Age + Gender
•	 Model 2: Age + Gender + Genotype
•	 Model 3: Age + Gender + Genotype + Blood-based variables

Model 2 is built as a baseline as the demographic variables are 
usually available in reality. As shown in Table 1, most E4- subjects are in 
the PiB- group and most E4+ subjects are in the PiB+ group, therefore 
it is of interest to investigate the impact of genotype by only including 
age and gender in Model 1. Also, to study the additional contribution 
from the blood-based variables, all the three demographical variables 
are forced to be included in Model 3. Model 1 and Model 2 are built 
via both random forest and binomial logistic regression. When using 
random forest, 2000 trees are generated, the minimum terminal node 

size is 1, and all the demographical variables are used as candidate 
variables for each node split. Model 3 is built via both random forest 
and binomial logistic regression with L1 LASSO penalty. When using 
random forest, 2000 trees are generated, the minimum terminal 
node size is 1, and 15 variables are used as candidate variables for 
each node split. Furthermore, cross-validation is used for the model 
building and model assessment. At each time, the 180 subjects are 
divided into a training set with   subjects and a test set with  subjects. 
The model that is built upon the training set is applied to the test 
set to assess the classification performance. The above process is 
repeated 100 times, and the metrics of specificity, sensitivity, AUC are 
recorded accordingly. (Figures 2a & 2b) summarize the classification 
performance for random forest and binomial logistic regression, 
respectively, and the median metrics are summarized in (Table 3). 
These performance metrics show that the E4 genotype significantly 
improves the PiB SUVR classification performance, especially for the 
random forest model. However, the performance metrics for Model 
3 are not quite different from those for Model 2, which implies that 
the blood-based variables do not significantly improve the PiB SUVR 
classification performance.
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Figure 2: PiB SUVR classification performance.
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Table 3: Median metrics for PiB SUVR classification performance.

Random forest

Model 1 Model 2 Model 3

AUC 0.57 AUC 0.67 AUC 0.67

Sensitivity 0.57 Sensitivity 0.68 Sensitivity 0.69

Specificity 0.54 Specificity 0.65 Specificity 0.65

Binomial logistic regression

Model 1 Model 2 Model 3

AUC 0.65 AUC 0.7 AUC 0.71

Sensitivity 0.67 Sensitivity 0.7 Sensitivity 0.72

Specificity 0.63 Specificity 0.67 Specificity 0.67

Figure 3: Clinical status classification performance.
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Clinical Status Classification Model

Kruskal-Wallis test is applied to each variable, and the 200 
variables with the smallest p-value are pre-selected. As in Section 3.2, 
the same three sets of variables are used to develop the clinical status 
classification model. Model 1 and 2 are built via both random forest 
and multinomial logistic regression. Model 3 is built via both random 
forest and multinomial logistic regression with L1 LASSO penalty. 
Also, the same parameters are set for random forest as in Section 3.2. 
(Figures 3a & 3b) summarize the classification accuracy for the random 
forest and multinomial logistic regression model, respectively, and the 
median accuracies are shown in (Table 4). Figure 3a shows the blood-
based variables improve the clinical status classification accuracy 
by 12% when the random forest technique is adopted resulting in 

an accuracy of 66%. Figure 3b shows the classification accuracy is 
also slightly improved by including the blood-based variables when 
the multinomial logistic regression technique is adopted, but the 
improvement is not as much as that for the random forest technique, 
which is because the multinomial logistic regression model has better 
classification performance than the random forest model when the 
clinical status classification model is built upon only the demographic 
variables. The top variables are shown in (Table 5), most of which are 
IgG and IgM autoantibodies. The accuracy in our study is lower than a 
previous report with IgG autoantibodies [7] where it was reported to 
be over 90%. This disagreement could be due to differences in cohort 
size and composition as well as the demographic variables (balance of 
age and gender between the clinical classifications).

Table 4: Median metrics for clinical status classification performance.

Random forest

Model 1 Model 2 Model 3

Accuracy 0.57 Accuracy 0.54 Accuracy 0.66

Multinomial logistic regression

Model 1 Model 2 Model 3

Accuracy 0.66 Accuracy 0.66 Accuracy 0.69

Table 5: Top blood-based variables for clinical status classification.

IgG_BC016486.1 IgG_NM_016576.2 IgM_NM_015671.2

IgG_NM_021728.2 IgG_BC002955.1 IgM_NM_006429.1

IgG_BC012176.1 IgG_NM_198449.1 IgM_BC017269.2

IgG_NM_031268.3 IgG_NM_005309.1 IgM_BC014475.1

IgG_BC025963.1 IgG_BC025784.2 IgM_NM_022135.2

IgG_NM_001759.2 IgG_NM_001031812.2 IgM_BC047901.2

IgG_NM_015584.2 IgG_NM_021149.1 IgM_BC014218.2

IgG_BC068530.1 IgG_NM_016932.2 IgM_NM_004108.2

IgG_NM_030948.1 IgG_BC054517.1 IgM_NM_000586.2

IgG_BC046634.2 IgG_NM_007065.2 IgM_BC039904.1

IgG_BC052750.1 IgG_BC064612.1 IgM_BC022325.1

IgG_BC041769.1 IgG_NM_002790.1 IgM_BC008438.1

IgG_NM_173558.2 IgM_NM_004281.2 IgM_NM_003722.3

IgG_NM_003944.2 IgM_NM_002832.2 IgM_NM_002018.2

IgG_BC096708.1 IgM_BC053898.1 IgM_NM_018297.2

IgG_BC016961.1 IgM_BC002557.2 IgM_BC007014.1

IgG_NM_005047.2 IgM_NM_002994.2 IgM_BC043391.1

IgG_BC069185.1 IgM_BC016961.1 IgM_NM_021130.1

IgG_BC036364.1 IgM_NM_080660.2 IgM_BC034376.1

IgG_BC009398.1 IgM_NM_016230.2 IgM_NM_001008657.1

IgG_BC014924.1 IgM_NM_006685.2 Lipi_PE(36:3e)

IgG_NM_002462.2 IgM_NM_002813.4 Lipi_PE(40.1)+PC(37:1)

IgG_NM_032596.3 IgM_BC040285.1 Lipi_PE(p16:0/18:1)
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IgG_BC035568.1 IgM_NM_020064.2 Lipi_PE(p18:0/20:4)

IgG_BC000029.2 IgM_NM_005607.1 Lipi_SM(d18:1/23:1)

IgG_NM_004873.1 IgM_NM_032448.1 Lipi_SM(d18:1/24:0)

IgG_BC033794.1 IgM_BC011379.1 Lipi_TG(51:7)

IgG_BC004872.2 IgM_BC004349.1 Lipi_LysoPC(20:3)

IgG_BC004514.1 IgM_BC096212.2 Lipi_unknown

IgG_NM_000584.2 IgM_NM_002755.2 Lipi_PC(0-18:0/18:2)

IgG_NM_145865.1 IgM_NM_181712.2 Lipi_PC(36:4e)

IgG_NM_207047.1 IgM_NM_012478.2 Lipi_ChoE(18:2)

IgG_BC099907.1 IgM_BC018049.1 Lipi_PC(p18:0/20:4)

IgG_NM_012420.1 IgM_NM_030662.2 Polar_Hexadecanoic acid, 3,7,11,15-tetramethyl

IgG_NM_020438.3 IgM_BC000567.2 Polar_2-Hydroxybutyric acid

IgG_NM_144664.3 IgM_NM_024330.1 Polar_Pyruvic acid

IgG_NM_018145.1 IgM_NM_006327.2 Polar_1-Dodecanol

IgG_BC017810.1 IgM_BC008091.1 Polar_Arabinofuranose

IgG_NM_021227.2 IgM_Hs~IVGN:PM_2139~Ext:Histone-type IIA Polar_Arabinofuranose

IgG_NM_014431.1 IgM_NM_015191.1

IgG_BC020637.1 IgM_NM_178126.2

IgG_BC033731.1 IgM_NM_032643.3

IgG_NM_000376.1 IgM_NM_145251.2

IgG_NM_016940.1 IgM_NM_000575.1

IgG_NM_020666.2 IgM_NM_001260.1

IgG_BC027900.1 IgM_BC012746.1

IgG_NM_053030.2 IgM_BC050551.1

IgG_BC005823.1 IgM_BC036107.1

IgG_NM_181509.1 IgM_BC013426.1

IgG_NM_002753.2 IgM_NM_003141.2

IgG_BC032844.1 IgM_BC010117.1

IgG_BC008656.1 IgM_NM_024668.2

IgG_BC040053.1 IgM_BC002381.2

IgG_BC009710.1 IgM_NM_020137.3

IgG_NM_022650.1 IgM_NM_014840.2

IgG_NM_138812.1 IgM_NM_005876.3

IgG_NM_002863.3 IgM_NM_006374.2

IgG_NM_033666.1 IgM_NM_001219.2

IgG_BC002680.1 IgM_BC050603.1

Conclusion and Discussion
Data fusion exists in many fields of study and can be used to 

create composite knowledge signatures from multiple sources by 
creating new signatures and improving the existing ones from raw 
data, adding additional signatures to the existing ones to increase 
coverage, and studying the dissimilarity among signatures and 
creating signatures that complement each other. In this paper, we 
adopt data fusion to combine multiple high dimensional data sets 

upon which classification models are developed to predict amyloid 
burden as well as the clinical diagnosis. Specifically, non-parametric 
techniques are used to pre-select variables, and random forest and 
multinomial logistic regression techniques with LASSO penalty are 
performed to build classification models. We apply the proposed data 
fusion framework to the AIBL cohort and demonstrate improvement 
of the clinical status classification accuracy. Class prediction with high-
dimensional features is an important problem and has received a lot 
of attention in the biological and medical studies [21-24]. Variable and 
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feature selection have become research focus when tens or hundreds 
of thousands of variables are available. More classification modeling 
and variable selection techniques will be investigated in future work. 
Furthermore, we will consider expanding the current data fusion 
framework to include more data sources of different platforms.

References
1.	 Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, et al. (2011) Toward 

defining the preclinical stages of Alzheimer’s disease: Recommendations 
from the National Institute on Aging-Alzheimer’s Association workgroups 
on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 
7(3): 280-292.

2.	 Palmqvist S, Zetterberg H, Mattsson N (2015) Detailed comparison of 
amyloid PET and CSF biomarkers for identifying early Alzheimer disease. 
Neurology 85(14): 1240-1249. 

3.	 Herscovitch P (2015) Amyloid imaging coverage with evidence develop-
ment and the IDEAS study. J Nucl Med 56(5): 20N.

4.	 Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, et al. 
(2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a 
typical case of Alzheimer’s disease. Brain 131(6): 1630-1645.

5.	 Leitão MJ, Baldeiras I, Herukka S-K (2015) Chasing the effects of pre-an-
alytical confounders – A multicenter study on CSF-AD biomarkers. Fron-
tiers in Neurology 6: 153. 

6.	 Oresic M, Hyötyläinen T, Herukka S-K, Sysi-Aho M, Mattila I, et al. (2011) 
Metabolome in progression to Alzheimer’s disease. Translational Psychi-
atry 1(12): e57.

7.	 Nagele E, Han M, DeMarshall C, Belinka B, Nagele R, et al. (2011) Diagnosis 
of Alzheimer’s disease based on disease-specific autoantibody profiles in 
human sera. PLoS One 6(8): e23112.

8.	 DeMarshall C, Nagele E, Sarkar A (2016) Detection of Alzheimer’s disease 
at mild cognitive impairment and disease progression using autoantibod-
ies as blood-based biomarkers. Alzheimers Dement 3: 51-62. 

9.	 Azuaje F, Dubitzky W, Black N, Adamson K, et al. (1999) Improving clinical 
decision support through case-based data fusion. IEEE Transactions on 
Biomedical Engineering 46(10): 1181-1185.

10.	 Le Cao K-A, Martin PGP, Robert_Granie C, Besse P (2009) Sparse canonical 
methods for biological data integration: application to a cross-platform 
study, BMC Bioinformatics 10: 34.

11.	 Yuan Y, Savage RS, Markowetz F (2011) Patient-specific data fusion de-
fines prognostic cancer subtypes. PLoS Comput Biol 7(10): e1002227. 

12.	 Antony R (2001) Data fusion automation: A top-down perspective. In 
Handbook of Multisensor Data Fusion. DL Hall and J Llinas. New York, CRC 
Press.

13.	 Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, et al (2001) Miss-
ing value estimation methods for DNA microarrays. Bioinformatics 17(6): 
520-525.

14.	 Tusher V, Tibshirani R, Chu G (2001) Significance analysis of microarrays 
applied to transcriptional responses to ionizing radiation. PNAS 98: 5116-
5121.

15.	 Breiman L (2001) Random forests, Machine Learning 45: 5-32.

16.	 Tibshirani R (1996) Regression shrinkage and selection via the lasso. 
Journal of the Royal Statistical Society Series B 58: 267-288.

17.	 Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, et al. (2009) The Australian 
Imaging, Biomarkers and Lifestyle (AIBL) study of aging: Methodology 
and baseline characteristics of 1112 individuals recruited for a longitudi-
nal study of Alzheimer’s disease. Int Psychogeriatr 21: 672-287.

18.	 Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, et al. (2010) Amyloid 
imaging results from the Australian Imaging, Biomarkers and Lifestyle 
(AIBL) study of aging. Neurobiology of Aging 31(8): 1275-1283.

19.	 Mattoon D, Michaud G, Merkel J, Schweitzer B (2005) Biomarker discovery 
using protein microarray technology platforms: Antibody-antigen com-
plex profiling. Expert Rev Proteomics 2(6): 879-889.

20.	 Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s 
disease. Annu Rev Med 47: 387-400.

21.	 Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple 
cancer types by shrunken centroids of gene expression. PNAS 99: 6567-
6572.

22.	 Golland P, Fischl B (2003) Permutation tests for classification: towards 
statistical significance in image-based studies. The 18th International Con-
ference on Information Processing in Medical Imaging LNCS 2732: 330-
341.

23.	 Dettling M (2004) BagBoosting for tumor classification with gene expres-
sion data. Bioinformatics 20(18): 3583-3593.

24.	 Chen X, Ishwaran H (2012) Random Forests for genomic data analysis. Ge-
nomics 99: 323-329.

Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us

•	 Global archiving of articles

•	 Immediate, unrestricted online access

•	 Rigorous Peer Review Process

•	 Authors Retain Copyrights

•	 Unique DOI for all articles

https://biomedres.us/

This work is licensed under Creative
Commons Attribution 4.0 License

ISSN: 2574-1241
DOI: 10.26717/BJSTR.2023.49.007866

Zhanpan Zhang.  Biomed J Sci & Tech Res

https://dx.doi.org/10.26717/BJSTR.2023.49.007866
https://pubmed.ncbi.nlm.nih.gov/21514248/
https://pubmed.ncbi.nlm.nih.gov/21514248/
https://pubmed.ncbi.nlm.nih.gov/21514248/
https://pubmed.ncbi.nlm.nih.gov/21514248/
https://pubmed.ncbi.nlm.nih.gov/21514248/
https://pubmed.ncbi.nlm.nih.gov/26354982/
https://pubmed.ncbi.nlm.nih.gov/26354982/
https://pubmed.ncbi.nlm.nih.gov/26354982/
https://pubmed.ncbi.nlm.nih.gov/25934680/
https://pubmed.ncbi.nlm.nih.gov/25934680/
https://pubmed.ncbi.nlm.nih.gov/18339640/
https://pubmed.ncbi.nlm.nih.gov/18339640/
https://pubmed.ncbi.nlm.nih.gov/18339640/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495343/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495343/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495343/
https://pubmed.ncbi.nlm.nih.gov/22832349/
https://pubmed.ncbi.nlm.nih.gov/22832349/
https://pubmed.ncbi.nlm.nih.gov/22832349/
https://pubmed.ncbi.nlm.nih.gov/21826230/
https://pubmed.ncbi.nlm.nih.gov/21826230/
https://pubmed.ncbi.nlm.nih.gov/21826230/
https://pubmed.ncbi.nlm.nih.gov/27239548/
https://pubmed.ncbi.nlm.nih.gov/27239548/
https://pubmed.ncbi.nlm.nih.gov/27239548/
https://pubmed.ncbi.nlm.nih.gov/10513121/
https://pubmed.ncbi.nlm.nih.gov/10513121/
https://pubmed.ncbi.nlm.nih.gov/10513121/
https://pubmed.ncbi.nlm.nih.gov/19171069/
https://pubmed.ncbi.nlm.nih.gov/19171069/
https://pubmed.ncbi.nlm.nih.gov/19171069/
https://pubmed.ncbi.nlm.nih.gov/22028636/
https://pubmed.ncbi.nlm.nih.gov/22028636/
https://www.taylorfrancis.com/chapters/edit/10.1201/9781420053098-12/data-fusion-automation-top-perspective-richard-antony
https://www.taylorfrancis.com/chapters/edit/10.1201/9781420053098-12/data-fusion-automation-top-perspective-richard-antony
https://www.taylorfrancis.com/chapters/edit/10.1201/9781420053098-12/data-fusion-automation-top-perspective-richard-antony
https://pubmed.ncbi.nlm.nih.gov/11395428/
https://pubmed.ncbi.nlm.nih.gov/11395428/
https://pubmed.ncbi.nlm.nih.gov/11395428/
https://pubmed.ncbi.nlm.nih.gov/11309499/
https://pubmed.ncbi.nlm.nih.gov/11309499/
https://pubmed.ncbi.nlm.nih.gov/11309499/
https://www.jstor.org/stable/2346178
https://www.jstor.org/stable/2346178
https://pubmed.ncbi.nlm.nih.gov/19470201/
https://pubmed.ncbi.nlm.nih.gov/19470201/
https://pubmed.ncbi.nlm.nih.gov/19470201/
https://pubmed.ncbi.nlm.nih.gov/19470201/
https://pubmed.ncbi.nlm.nih.gov/20472326/
https://pubmed.ncbi.nlm.nih.gov/20472326/
https://pubmed.ncbi.nlm.nih.gov/20472326/
https://pubmed.ncbi.nlm.nih.gov/16307517/
https://pubmed.ncbi.nlm.nih.gov/16307517/
https://pubmed.ncbi.nlm.nih.gov/16307517/
https://pubmed.ncbi.nlm.nih.gov/8712790/
https://pubmed.ncbi.nlm.nih.gov/8712790/
https://www.pnas.org/doi/full/10.1073/pnas.082099299
https://www.pnas.org/doi/full/10.1073/pnas.082099299
https://www.pnas.org/doi/full/10.1073/pnas.082099299
https://pubmed.ncbi.nlm.nih.gov/15344469/
https://pubmed.ncbi.nlm.nih.gov/15344469/
https://pubmed.ncbi.nlm.nih.gov/15344469/
https://pubmed.ncbi.nlm.nih.gov/15344469/
https://pubmed.ncbi.nlm.nih.gov/15466910/
https://pubmed.ncbi.nlm.nih.gov/15466910/
https://pubmed.ncbi.nlm.nih.gov/22546560/
https://pubmed.ncbi.nlm.nih.gov/22546560/
https://dx.doi.org/10.26717/BJSTR.2023.49.007866

