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ARTICLE INFO ABSTRACT

Background: In patients with intracranial injuries the application of brain atlas 
technique is not evident in post-processing of MR images, since anatomical parts of the 
brain are shifted due to the mass effect of the lesion or the treatment-induced struc-
tural distortions. Therefore, the alignment of grey and white matter structures to atlas 
templates around the altered areas can only be predicted to be moderately precise. The 
quantitative characterization of the distortion effects can help the optimization of spatial 
alignment. 

Objective: We aimed to characterize the accuracy of spatial normalization of 
T1-weighted MR images of 38 patients in three patient groups and 15 control subjects. 

Methods: The accuracy of fitting was measured by the spatial variability in the atlas 
space of 12 predefined regions drawn on the patient images. The reference regions can 
be divided into two groups: volumetric regions (e.g. caudate nucleus, central sulcus) and 
point-based markers (e.g. anterior commissure, anterior point of corpus callosum). Five 
software has been used for the spatial standardization: SPM8, SPM12, DARTEL, FSL and 
MNI Tools. An integrated parameter has been constructed to examine the accuracy of the 
investigated spatial standardization methods. The relative volume and the Jaccard index 
metrics were used for the distance measurements of landmarks in the case of volumet-
ric regions, at the point-based markers, the distance of reference points was used. The 
statistical comparison of the evaluated measurements helps to optimize the standardi-
zation pipeline for structural images of patients with tumors. 

Results: The results of this research also may help in more accurate and personal-
ized planning and can define newly developed biomarkers for further clinical and re-
search goals. 

Conclusions: We have a method for optimizing a brain atlas technique for clinical 
applications. This method is a good method because it provides scalable, usable param-
eters.

Introduction

The application of brain atlas technique is not evident in the 
post-processing of MR images in patients with intracranial space- 

 
occupying lesions since brain structures are shifted due to the mass 
effect of the lesion or the treatment-induced structural distortions 
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[1,2]. Therefore, the fitting of grey and white matter structures to 
atlas templates around the affected areas can only be expected to 
be partially accurate [3,4]. A typical demonstration of misalignment 
errors of spatial normalized T1-weighted MR images of tumorous 
patients can be seen in Figure 1. These misalignment errors are 
visible on the axial slice the area of the frontal lobe in the right side 
and around the lateral ventricles. Much publications and research 
groups studied the normalization problems of lesioned brains. 
Brett et al. [5] implemented cost function masking (CFM) using a 
“mask image” in which the voxel value 1 denotes the excluded area 
(masking technique), which seems to be a simple solution, but the 
applicability these types of mask images are not trivial. Cuadra et 
al. [6] examined the spatial normalization of MR images in patients 
with brain tumors in a common stereotactic space. They used brain 
atlases to pool data from different patients into a common space 
to perform group analyses. The transfer of atlas-based structural 
and functional information into the individual patient’s space can 
be achieved via the inverse mapping, to segment brain areas and 
facilitate surgical or radiotherapy treatment planning. 

Figure 1: Misalignment of spatial normalized T1-weighted 
MR images of tumorous patients. The red arrows and 
circles illustrate in which areas were the fitting difference 
greater.

Bug et al. [7] created an image-based query system that 
can retrieve imagery based on anatomical location. The system 
accepts slide images as input and yields a matrix of transformation 
parameters that map each point on the input image to a 
standardized 3D brain atlas. Napadov et al. [8] have devised a 
two-stage automated, and reference mask guided registration 
technique (Automated Brainstem Co-registration, or ABC) for 
improved brainstem co-registration. Their approach utilizes a 
brainstem mask dataset to weight an automated co-registration 
cost function. Crinion et al. [9] examined different normalizations 
available in Statistical Parametric Mapping (SPM) and the effect 
of CFM. They concluded that the unified segmentation with CFM 
provides high accuracy of the fitting of damaged brains. The main 
difference between our study and the studies described is that the 
same image processing pipeline was used for tumorous patients 
and healthy subjects. Accordingly, our goal was to extend the 
spatial normalization procedure with a data-driven option: if the 

automated image processing script found a tumor mask, the script 
3 will use this mask, so in this case, a “mask-based normalization” 
will run; otherwise, the spatial normalization parameters will be 
calculated in a “normal way” (i.e. developed for healthy subject). 

In this study, we measured the accuracy of fitting by the spatial 
variability in the atlas space of 12 predefined anatomical regions 
and three types of tumor masks drawn on the images of patients 
and healthy controls by a radiographer. We divided the labels 
into two groups: volumetric regions (e.g. caudate nucleus, central 
sulcus) and point-based markers (e.g. anterior commissure, most 
rostral point of corpus callosum). We used five software for the 
spatial standardization procedure: SPM8, SPM12, DARTEL, FSL 
and MNI Tools. An integrated parameter has been constructed to 
examine the accuracy of the investigated spatial standardization 
methods and to compare the accuracy of delineations. In the case of 
volumetric regions for the distance measurements of landmarks we 
used the relative volume and the Jaccard index metrics, and for the 
point-based markers we applied the distance of reference points. 

Materials and Methods 

Subjects/Data 

3D post-contrast MRI data from eight stroke patients were 
obtained from a therapeutic study [10], 3D post-contrast MRI 
data of 15 patients with meningioma, 15 patients with multiple 
metastases and 15 control subjects. A total of 53 patients’ data was 
used in this study. 

Image Acquisition 

Images were acquired at two scanners in the two diagnostic 
radiological centers of the University of Debrecen. Kenézy Hospital, 
Debrecen using a 1.5Tesla Siemens Magnetom Essenza magnetic 
resonance scanner. A 3D T1-weighted axial magnetization-
prepared rapid acquisition with gradient echo (MP-RAGE) 
structural image was obtained (echo time (TE)=4.73ms, repetition 
time (TR)=1540ms, inversion time (TI)=800ms, flip angle=15 slices 
with 0.9×0.9×0.9mm voxels). The University of Debrecen earlier 
used a 1.5Tesla GE Signa Excite magnetic resonance scanner. A 
3D T1-weighted axial image was obtained (echo time (TE)=7ms, 
repetition time (TR)=30 ms, inversion time (TI)=0ms, flip angle=45 
slices with 0.68×0.68×1.1mm voxels). 

Definition of the System of the Anatomical Reference Regions 
and Manual Segmentation 

We defined 12 points and placed them within the intracranial 
space that matched easily recognizable but crucial anatomical 
landmarks that are commonly found adjacent to treatment sites 
or eloquent cortical areas. We saved the 12 anatomical regions as 
12 different labels. The delineation of the reference regions aimed 
to measure the goodness of fitting the T1-weighted MR images 
into the atlas space. Therefore, reference regions were marked 
both on the native T1-weighted MR images and in atlas space by 
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a radiographer. After the spatial normalization procedure, the 
reference regions were drawn in native space transformed into the 
atlas space. Differences between the spatial position and shapes of 
the transformed reference regions and the appropriate region in 
atlas space could be measured. We divided the reference regions 
into two groups, volumetric regions and point-based markers. 
Volumetric regions are caudate nucleus (left, right), putamen (left, 
right) and central sulcus (left, right) (Figure 2A/B); point-based 
markers are anterior commissure, posterior commissure, most 
rostral and most occipital points of corpus callosum, two endpoints 
of the horizontal line which placed on the optic chiasma and 
connected the temporal lobes in the axial plane (left, right) (Figure 
3A/B). We delineated the caudate nucleus from the anterior horn 
of the lateral ventricle to the amygdala in axial plane (Figure 2A/B).

Figure 2: An example of volumetric regions. (A) Putamen 
and caudate nucleus in MNI152 space. (B) Putamen and 
caudate nucleus in native space.

Figure 3: An example of point-based markers. (A) Anterior 
and posterior commissure, most rostral and most occipital 
points of corpus callosum in MNI152 space. (B) Anterior 
and posterior commissure, most rostral point of corpus 
callosum in native space.

Delineation of Tumor Masks 

Tumor and surroundings affect the process of spatial 
standardization; therefore, tumor masks were needed. 

Among the investigated cases, tumor boundaries were well-
defined due to contrast enhancement. Not only the tumor had to 
be delineated, but the areas spoil the spatial standardization, e.g. 
edema, necrosis. It is called tumor mask for simplicity.

a)	 Method 1: precise tumor mask (tumor mask 1, Figure 
4/A). Freehand drawing was used for the delineation of the 
tumor and the affected edematous tissues in every slice. 

b)	 Method 2: raw drawing by polygon (tumor mask 2, Figure 
4/B). Delineating the tumor and the surroundings with a 
polygon in every fifth slices. 

c)	 Method 3: drawing with spheres (tumor mask 3, Figure 
4/C). The tumor and the affected tissues were covered with 
spheres which had different diameters.

Figure 4: Tumor drawing methods. (A) Tumor mask 1 - 
precise drawing in patient with multiple metastases (B) 
Tumor mask 2 - raw drawing by polygon in patient with 
multiple metastases (C) Tumor mask 3 - drawing with 
spheres in patient with multiple metastases.

Spatial Normalization Procedures 

For normalization we used five software: Statistical Parametric 
Mapping (SPM)8, SPM12 [11], Diffeomorphic Anatomical 
Registration Tool Through Exponentiated Lie Algebra (DARTEL) 
[12], FMRIB Software Library (FSL) [13] and Montreal Neurological 
Institute software (MINCtools) [14]. 

Comparison of Label Transformation 

All warped regions had to compare with the reference regions 
delineated in the MNI152 space. 

a)	 In the case of volumetric regions, we applied for 
comparison the relative volume: 

Where the Vtrans means the volume of transformed label 
measured in atlas space and the Vatl means the similar label 
delineated in atlas space. 

b)	 The second metric we used was the Jaccard index: 

Where Rtrans the binary mask of transformed label in atlas 
space and Ratl the binary mask of the same label delineated in 
atlas space. Hence the Jaccard index measures the binary mask 
similarity the transformed label with the delineated label in 
atlas space. 

c)	 In the case of the point-based markers we used the 
distance of reference point: 

Where the Ptrans means the MNI coordinates of transformed 
point-based marker and the Patl the same label delineated in 
atlas space. 

Statistical Analysis 

For the statistical investigation of the misalignment of reference 
region system we applied the R software. 
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For the first task, different kind of figures must be examined 
to show the distributions of the calculated region distances. For 
the second task, depending on the normality of the distribution of 
the calculated region distance metric (i.e. Jaccard distance [15]), 
parametric or non-parametric one-way ANOVA method was applied. 
For non-normal case, the Kruskal-Wallis test [16] implemented 
in coin package was used. For the multiple corrections, post-hoc 

Tukey test [17] implemented in “ls means” package was applied, 
which characterize by Student-t values how the different masking 
method reduced the misalignment of a given region. In this way 
accordingly, for the 12 reference regions, 12 Student-t parameters 
generated for each of the masking methods. Using these Student-t 
parameters, we selected the best method(s) for the investigated 
spatial normalization procedure. 

Table 1: Shows the anatomical reference points (landmarks).

Caudate nucleus Putamen Anterior 
commissure

Posterior 
Commissure Central sulcus Corpus callosum

Two endpoints of 
the horizontal line 

which placed on 
the optic chiasma 
and connected the 

temporal lobes in the 
axial plane

left side
right

side
left side

right

side
left side

right

side

most 
rostral

point

most 
occipital

point
left side

right

side

LABEL 1 LABEL 2 LABEL 3 LABEL 4 LABEL 5 LABEL 6 LABEL 7 LABEL 
8 LABEL 9 LABEL 

10 LABEL 11 LABEL 12

Results 

Our results showed that the most accurate standardization 
methods are FSL and SPM12 with default settings based on the 
processing of the data of 53 persons (Figures 5-8). The applicability 
of tumor masks in the warping part of the spatial normalization 

procedure could not reduce the misalignment of reference regions 
transformed into the atlas space (Figure 9). We have a tool for fine-
tuning each method: the effect of changing linear and non-linear 
parameters becomes measurable with our method described. 

Figure 5: The applied software for normalization in the healthy control group. In one panel we show a distance-metric (vol, 
Jaccard index, dist) calculated by the transformed label and its reference label in the case of different transformation methods. 
In the first 2 rows we show the panels of volumetric labels’ distance characteristics measured by relative volume (vol) and 
Jaccard index. In the bottom row the six point-based labels and reference label distance are shown.

Figure 6: The applied software for normalization in the stroke group. In one panel we show a distance-metric (vol, Jaccard 
index, dist) calculated by the transformed label and its reference label in the case of different transformation methods. In the 
first 2 rows we show the panels of volumetric labels’ distance characteristics 8 measured by relative volume (vol) and Jaccard 
index. In the bottom row the six point-based labels and reference label distance are shown.
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Figure 7: The applied software for normalization in the multiplex metastases group. In one panel we show a distance-metric 
(vol, Jaccard index, dist) calculated by the transformed label and its reference label in the case of different transformation 
methods. In the first 2 rows we show the panels of volumetric labels’ distance characteristics measured by relative volume (vol) 
and Jaccard index. In the bottom row the six point-based labels and reference label distance are shown.

Figure 8: The applied software for normalization in meningioma group. In one panel we show a distance-metric (vol, Jaccard 
index, dist) calculated by the transformed label and its reference label in the case of different transformation methods. In the 
first 2 rows we show the panels of volumetric labels’ distance characteristics measured by relative volume (vol) and Jaccard 
index. In the bottom row the six point-based labels and reference label distance are shown.

Figure 9: The Jaccard index of FSL software and the three-type of masks. In one panel we show a distance-metric (vol, Jaccard 
index, dist) calculated by the transformed label and its reference label in the case of different transformation methods. In the 
first 2 rows we show the panels of volumetric labels’ distance characteristics measured by relative volume (vol) and Jaccard 
index. In the bottom row the six point-based labels and reference label distance are shown.

Discussion and Conclusion 

The measurement of the accuracy of the spatial normalization 
procedure is one of the most intensively examined multimodal image 
processing problems. In the case of the images of healthy subjects, a 
huge number of working groups described methods and metrics to 
measure the goodness of a dedicated algorithm or software used for 

spatial normalization [9,18-20] but only a few papers could be found 
which compare different methods [21]. They described two types 
of measurement technique: voxel-level similarity and landmark or 
reference region-based similarity measurement. The former use of 
any monotonic function (named similarity function) which evaluate 
a real number (scaled to [0,1], or non-scaled) from the template 
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image and the transformed subject image that way the larger 
number represents the best anatomically alignment of investigated 
images. Two commonly used similarity functions are the voxel-
wise calculated cross-correlation and mutual information [22]. The 
landmark or reference region-based similarity measurement based 
on predefined - usually manually delineated - anatomical regions 
or segmented regions. In both cases, the reference regions must be 
defined on the original images of subjects and the atlas template, 
as well. During the spatial normalization procedure, the reference 
regions are transformed into the atlas space by the very same 
transformation used on images. The transformed reference regions 
are utilized to characterize the accuracy of spatial normalization 
since an arbitrary 3D spatial distance metric which measures two 
3D object distances can be used to evaluate the distance between 
the transformed regions and the regions drawn in atlas space 
[23,24]. Thanks to some freely available software (MNI tools, SPMs, 
FSL, etc.) the brain atlas technique became available worldwide 
for neuroimaging researchers who have adopted more and more 
complex techniques to infer 10 the most of their datasets. The 
mains of these techniques are the brain activation studies, brain 
morphometry and fiber tracking [25, 26]. Nevertheless, the above-
mentioned brain-atlas based image processing techniques have 
applied successfully in a huge number of studies. The application 
of these methods is not available for researchers those want to 
investigate patients’ data with space-occupying lesions. The main 
limitation is simple technical: the accuracy of spatial normalization 
algorithms is not acceptable in space-occupying/tumorous cases. 

According to the aims of this study, a complex system was 
developed which contain an image database and software to 
make it possible to analyze the efficiency of spatial normalization 
method for stroke patients. In the software, the reference region-
based distance metric method was adopted, and so the calculation 
was based on manually drawn regions. The regions were drawn in 
native (original) space represented by subject’s T1-weighted MR 
images and in the MNI152 atlas space represented by template 
image, as well. Thirteen regions have been determined for drawing: 
caudate nucleus (left, right), putamen (left, right), anterior and 
posterior commissure, central sulcus (left, right), most rostral and 
most occipital point of the corpus callosum, and two endpoints 
of the horizontal line which placed on the optic chiasma and 
connected the temporal lobes in the axial plane (left, right). The 
main challenge of this work was the definition and delineation of 
the reference regions in 3D. To solve this problem, a huge number of 
T1-weighted images were investigated to find which regions can be 
found effortlessly. After the appropriate software selection (Slicer 
3D) stroke patient group was selected containing eight subjects. 
Using the T1-weighted images of the subjects, the reference regions 
had been drawn and combined with the images were stored into a 
dedicated image-database. The developed software was modified to 
automatically work on this database and create spatial normalized 

reference regions. The statistical scripts of the software system 
currently use Jaccard index to calculate the difference between 
the transformed and atlas regions. For the statistical inference, the 
software produced two types of plots organized by patient groups 
and regions: whiskers plots of the evaluated distance distributions 
and distance metric changing relative to the spatial normalization. 

The main purposes of this study have been completed, and the 
spatial normalization accuracy measuring framework has been 
developed and tested. There are two strong points of this work: the 
extensible image database and the modular and scalable software. 
It is planning to extend the image database by adding more subjects 
and patient groups. We used 5 distance metrics to measure the 
fitting accuracy as closely as possible and we applied 5 spatial 
normalization software from which we could select those that gave 
the best results according to our research goals. In summary we 
have a method for optimizing a brain atlas technique for clinical 
applications and it provides scalable, usable parameters. 
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