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ARTICLE INFO Abstract

The human body exhibits a variety of autonomic responses. For example, changing 
light intensity provokes a change in the pupil dilation. In the past, formulae for pupil size 
based on luminance have been derived using traditional empirical approaches. In this 
paper, we present a different approach to a similar task by using machine learning to ex-
amine the multivariate non-linear autonomic response of pupil dilation as a function of a 
comprehensive suite of more than four hundred environmental parameters leading to the 
provision of quantitative empirical models. The objectively optimized empirical machine 
learning models use a multivariate non-linear non-parametric supervised regression 
algorithm employing an ensemble of regression trees which receive input data from both 
spectral and biometric data. The models for predicting the participant’s pupil diameters 
from the input data had a fidelity of at least 96.9% for both the training and independent 
validation data sets. The most important inputs were the light levels (irradiance) of the 
wavelengths near 562 nm. This coincides with the peak sensitivity of the long-wave    
photosensitive cones in the retina, which exhibit a maximum absorbance around maxλ  = 
562.8 ± 4.7 nm.

Introduction
This study is part of a broader investigation into the role of 

the environment in influencing human physical and cognitive per-
formance. The main purpose of this paper is to provide a baseline 
which accurately describes how changing illuminace affects pupil 
dilation, so that when emotional or cognitive factors are also in-
volved, we can start to discern the relative roles of illumnance and 
cognitive load in affecting  the pupil dilation [1-3]. The ranking of 
the importance of the predictor variables used in our empirical ma-
chine learning models provides a useful metric of which variables 
are the key drivers, providing us with valuable insights. The Auto-
nomic Nervous System (ANT) is responsible for changes in pupil 
dilation. The changes in pupil dilation may occur due to changing 
light intensity, cognitive load and emotional load [4]. While the light 
intensity allows an immediate response at the retinal level, an emo-
tional and especially cognitive response, require some higher level 
processing. So, when the visual input is sent from the eye to the vi-
sual cortex via the optic nerve, it first goes through the thalamus. If 
at this point an imminent threat is detected, it responds mobilizing 
the body for a  ‘fight or flight’ response, which is then reflected in the  

 
changes in the pupil size. As the visual information is relayed to the 
visual center of the brain in the occipital lobe, it is further sent for 
processing via various routes to different parts of the brain. In a fast 
paced changing environment, executive function in the prefrontal 
lobes make decisions in a fraction of a second. This process also 
effects changes in pupil dilation. Some areas of the brain involved 
in the processing of cognitive and emotional load are deep seated 
structures and can only be observed by expensive equipment such 
as fMRI in an artificial lab setting. So, part of the question we are 
starting to address in this study is how can we tell the difference 
to which stimuli the pupil is responding? This study begins to an-
swer this question using non-invasive methods that can be used in a 
natural setting by providing a methodology to accurately model the 
change in pupil size as a function of key environmental variables, so 
that when other changes are also occurring simultaneously (such 
as emotional and cognitive load) we can start to examine how these 
factors modify the pupil dilation response that occurs.

In addition to changes in pupil dilation, other autonomic 
responses include changes in heart rate variability, galvanic skin 
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response (or sweating), and core temperature [5-7]. Each of these 
responses are influenced by variables such as cognitive load [8-
11], age [12], pain level [13], and emotional state [14]. In several 
previous studies formulae for pupil size utilized a single variable, 
luminance [15-19]. A major shortcoming of these models is their 
lack of generality. This is illustrated in Figure 1, where the true 
pupil diameter is plotted against the estimated pupil diameter 
provided by each of the models enumerated in the legend. There 
is a clear contrast between the diffuse cloud of data points from 
previous model predictions and the high fidelity predictions of 
the machine learning model developed here, shown by the green 
(training points) and the red (independent validation points) in 
the foreground. Of the five previous models, Holladay’s formula 
[15] performed the best, with a fidelity of 25%. The substantial 
error of these previous models is a likely reflection of both missing 

parameters and the challenge of finding the exact functional form 
required for predicting the pupil diameter. Later models added 
variables such as adaptation field, age, and monocular adaptation 
[2,16-21]. All of the earlier models considered ambient light levels 
by way of the total luminance as opposed to the fine wavelength 
resolution of the UV/visible spectrum that was used in this 
study. The fine wavelength resolution allows one to identify the 
wavelengths to which the pupil dilation is most sensitive, it is 
noteworthy that there are some small variations from eye to eye 
in the key wavelengths for determining the pupil diameter. In this 
study we have utilized recent technological developments, the full 
visible spectrum and pupil size can be measured with high accuracy 
and in large volume combined with machine learning, this provides 
new opportunities for the development of much more robust higher 
fidelity empirical models.

Figure 1: Evaluation and comparison of previous pupil diameter models which utilized a single variable, luminance, showing 
poor fidelity contrasted with the multivariate empirical machine learning model for the average pupil diameter developed in 
this study showing good fidelity (foreground green training and red validation points). The true average diameter of the left 
and right pupils is given on the y-axis, and the estimation by each respective model on the x-axis. Luminance was computed 
from measured illuminance where the luminance was assumed to be isotropic and reflectance assumed to be 1. Models were 
evaluated based on description by Watson and Yellott [2].

In this first demonstration case study, with just one participant, 
we examined the effect of both light intensity and the orientation/
motion of the head on the diameter of a participant’s pupils. 
Different illumination environments can be characterized by their 
spectra. This light consisting of various wavelengths can interact 
with different photo-receptors (light sensitive cones) in the retina. 
This interaction produces electrical signals that are sent to the brain 

and interpreted as color [22]. These cones are disproportionately 
sensitive to particular wavelengths with absorbance peaks around 
420 nm (violet), 534 nm (green), and 564 nm (yellow-green) [3]. 
An illustration of these sensitivities can be shown by a plot of the 
mean absorbance of the three classes of photo-receptors (short-
wave, middle-wave, and long-wave cones) vs wavelength (Figure 2).
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Figure 2: Normalized mean absorbance spectra for long-wave, middle-wave, and short-wave cones. Maximum absorbance 
values for each class of cones are  420 nm  ± 4.7 nm, 534 nm  ± 3.7 nm, and 564  ± 4.7 nm, 420 nm  ± 4.7 nm, respectively. Dashed 
vertical lines represent the top 4 important predictors taken from the pupil diameter models created here. The sensitivity 
range of the Konica Minolta CL- 500A Spectrophotometer is 360 – 780 nm indicated by the gray double-sided arrow. Cone 
absorbances were based on a figure in the paper by Bowmaker and Dartnall [3].

New predictive empirical models of the pupil diameter can be 
derived using supervised multivariate non-linear non-parametric 
machine learning regression. The accuracy of the models can be 
evaluated using an independent validation (or testing) dataset 
whose data records were not utilized in the model training. This 
machine learning approach can also provide insights on the relative 
importance of the inputs (i.e. predictors). In this case we had a 
few hundred inputs, including the light intensities for every nm of 
wavelengths from 360-780 nm (ultra-violet to near infrared).

Materials and Methods
Data was collected during 3 outdoor/indoor walks where 

spectral and biometric data were recorded. The walks took place 
in the morning (8:30 AM) and late afternoons (4 PM), each lasting 
approximately fifteen minutes. Spectral data was measured 
approximately every 3 seconds using a NIST calibrated Konica 
Minolta CL-500A Illuminance Spectrophotometer, which measures 

the illuminance and spectral irradiance of wavelengths from 
360-780 nm with 10.3 nm resolution. Pupil diameters, head 
orientation, and the proper acceleration of the head were recorded 
100 times a second using Tobii Pro Glasses 2. The glasses use an 
infrared grid projected onto each eye to estimate the position and 
size of the pupils. The orientation and acceleration of the head 
are estimated using a Microelectromechanical System (MEMS) 
gyroscope and MEMS accelerometer located in the glasses. Data 
was prepared and analyzed using Matlab 2019a.

The data preparation involved six steps:

1.	 Collection - Recording of the raw data. Data was written 
to 6 separate files corresponding to the 2 devices for each of the 3 
trials.

2.	 Formatting - Converting raw data files to Matlab timeta-
ble objects. 6 timetables were created from the raw data files.
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3.	 Synchronizing - The sampling frequencies differed for 
each device. 1 record every 3 seconds for the spectral data, ver-
sus 100 records every second for the biometric data. To account 
for this, the 2 timetables for a particular trial were reconfigured  
to share the same time steps using Matlab’s retime function with 
a linear interpolation. The timetables for each trial could then com-
bined using the synchronize function. Resulting in 3 timetables, one 
for each of the 3 trials.

4.	 Merging - Concatenating all 3 timetables into a single 
timetable.

5.	 Cleaning - Removing records with device error flags, NaN 
elements, and zero values for pupil diameter. The latter case is ad-
dressed below.

6.	 Generating - Creating new variables such as the average 
pupil diameter and inter-eye pupil diameter difference.

A major challenge was introduced in step 5 (cleaning) of the 
data preparation due to a significant portion of the pupil diameter 
records taking values of 0. This was a non-physical consequence 
of the mechanism with which the pupil diameters were measured. 
When there is a high intensity of ambient infrared light from 
bright sunshine the glasses can no longer readily discern the 
pupil diameter, this is reflected in Figure 3 where pupil diameter 
dropouts coincide with time intervals of high spectral irradiance. 
These records were removed from the data, reducing the number 
of records from 380,000 to 80,000 records.

Figure 3: The normalized spectral irradiance at every time step for all walks is plotted. The irradiance is normalized by 
dividing all values by the maximum spectral irradiance within each walk. Relative size of irradiance values are indicated by 
the colorbar. Spectral lines at 528, 563, 567, and 776 nm represent the most important predictors for the pupil diameter models. 
Left (yellow) and right (green) pupil diameters are plotted over time. Note the pupil diameter dropouts in time intervals where 
the spectral irradiance is high. 
a) Walk 1 measurements during late afternoon (≈ 4PM).   
b) Walk 2 measurements during morning (≈ 8:30 AM) with overcast.
c) Walk 3 measurements during late afternoon (≈ 4 PM).
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From the recorded data we sought to estimate 5 different 
parameters, namely the: average of the left and right pupil 
diameters (APD), left pupil diameter (LPD), right pupil diameter(s)    
(RPD), magnitude of the difference between the left and right pupil 
diameters (PDD), and the illuminance. These parameters can be 
estimated by constructing objectively optimized empirical machine 
learning models. The hyperparameters (i.e. the parameters that 
define options associated with the training process) of an ensemble 
of regression trees able to use both boosting and bagging were 
optimized (the Matlab function fitrensemble with the Optimize 
Hyperparameters option set to all). More information on this 
function is available in the Matlab documentation [23]. We have 
done many previous machine learning studies [24-56]. The data was 
split into 2 subsets: one for training and one for the independent 
testing of each empirical machine learning model. With 90% of the 
data used for training the multivariate non-linear non-parametric 
regression models and 10% of the data used for independent 
testing of the models.

Results and Discussion
In the following subsections we discuss the results of the 5 

different empirical machine learning models. The accuracy of 
each model was assessed via a scatter plot of the true vs estimated 
response variable values (see Figures 4a, 5a, 6a, 7a, & 9a). If the 
true and estimated values are identical, the resulting scatter plot 
will be a straight line with a slope of one and an intercept of zero, 
i.e. a perfect one to one plot with a correlation coefficient, r2, equal 
to 1. This ideal is indicated by a black line in each scatter plot. The 
correlation coefficients for the training (plotted as green circles) 

and testing (plotted as red pluses) datasets were computed using 
Matlab’s corrcoef function.

The relative predictor importance ranking of each model was 
derived using the predictorImportance function. The relative 
rankings are visualized as bar plots (see Figures 4b, 5b, 6b, 7b, & 
9b). The importance estimates are plotted on a log scale with the 
most important predictors shown toward the top. In the pupil 
diameter models (i.e. models for the APD, LPD, RPD, and PDD), the 
top 20 out of 427 predictors are shown. For the illuminance model, 
all 7 predictors are given in the ranking. The top 3 predictors are 
indicated by red bars, the next 2 important predictors by yellow 
bars, and the remaining predictors by blue bars.

The Average Pupil Diameter Model

Figure 4 shows the results of the Average Pupil Diameter (APD) 
model. The APD was estimated using the spectral irradiance at every 
nm between 360-780 nm, the gyroscope, and the accelerometer 
data as predictor variables. The scatter plot of the true vs the 
estimated average pupil diameter values is shown in Figure 4a. The 
model had correlation coefficients of > 0.99 for both the training 
and testing data subsets. Thus, the empirical machine learning 
model was successful in predicting the average pupil diameter. 
Figure 4b shows the ranking of the relative importance of the 
inputs in predicting the APD, the top 3 predictors are the irradiance 
values at 561, 563, and 562 nm, which coincides with the maximum 
absorbance of the long-wave cones at around 563 nm [3]. This 
suggests the long-wave photo-receptors play a more significant role 
than the short- or middle-wave receptors in controlling the average 
size of the pupils for the participant.

Figure 4: Plots for the Average Pupil Diameter model. 
a)	 True vs estimated average pupil diameter in millimeters. 
b)	 Predictor importance estimates for the average pupil diameter model.
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The Left Pupil Diameter Model

The results for the Left Pupil Diameter (LPD) model are shown 
in Figure 5. The LPD was estimated using the same predictors as 
the APD, the spectral irradiance from 360-780 nm, the gyroscope, 
and the accelerometer data. The model was successful in predicting 
the LPD with a correlation coefficient of > 0.96 for both the training 

and validation data subsets. The top predictor (567 nm) is again 
near the maximum absorbance of the long-wave photo-receptors 
(563 nm). The next top 6 predictors are the irradiance values at 
528, 568, 564, 527, 668 and 570 nm, which seem to coincide with 
both the middle- and long-wave photo-receptors with maximum 
absorbance values near 533.8 ± 3.7 nm and 563 nm, respectively, 
with the exception of the irradiance at 668 nm [3].

Figure 5: Plots for the Left Pupil Diameter model. 
a)	 True vs estimated left pupil diameter in millimeters. 
b)	 Predictor importance estimates for the left pupil diameter model.

The Right Pupil Diameter Model

The results for the Right Pupil Diameter (RPD) model are shown 
in Figure 6. The RPD was estimated using the same predictors as 
the APD and LPD. For the RPD model there is a strong correlation 
between the estimated and true values, with coefficients of 
determination > 0.99 for both data subsets, shown in Figure 6a. 
The top 2 predictors are 563 nm and 562 nm, which again coincide 
with the maximum absorbance of the long-wave cones near 563 
nm. The next most important predictor was the irradiance at 776 
nm corresponding to near infrared light. This and the appearance 

of near infrared predictors in all the importance rankings may be a 
consequence of the infrared noise in the environment, resulting in 
the measured pupil diameters to be smaller than the actual values. 
An interesting result from the importance ranking in Figure 6b, 
is the appearance of a non-spectral predictor (Accelerometer Z) 
which denotes the proper acceleration in the direction in front of 
the glasses. This may be correlated to the participant looking down 
to navigate obstacles in the walking path such as stairs, inclines, 
rugged terrain, and other impediments. Focusing on a specific task 
or object may cause an increase in cognitive load, resulting in a 
pupillary response [10,11].

Figure 6: Plots for the Right Pupil Diameter model in millimeters. 
a)	 True vs. estimated right pupil diameter in millimeters. 
b)	 Predictor importance estimates for the right pupil diameter model.
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The Pupil Diameter Difference Model and Pupil Asym-
metry

The results for the left and right pupil diameter models are no-
ticeably different (see Figures 5 and 6), which may suggest an asym-
metry in the behavior of each pupil. One measure of this asymmetry 
is the magnitude of the difference between the left and right pupil 

diameters. This is shown by the results of the Pupil Diameter Differ-
ence (PDD) model given in Figure 7. The same predictors were used 
for the PDD model as in the APD, LPD, and RPD models. This empir-
ical model was not successful in predicting the PDD, since the cor-
relation coefficient was 0.43 for the testing data subset, as shown in 
Figure 7a. Clearly the most important predictors for modeling this 
asymmetry were not available in the training dataset.

Figure 7: Plots for the Pupil Diameter Difference .
a)	 True vs estimated pupil diameter differences in millimeters. 
b)	 Predictor importance estimates for the pupil diameter difference model.

Another metric of the pupil asymmetry can be the accuracy of 
the LPD model in estimating the RPD and vice versa. The resulting 
scatter plots are given in Figure 8. Despite the differences in the 
importance rankings and failures of the PDD model, the estimates 
are fairly accurate with correlation coefficients of > 0.95 for both 
the testing and training datasets. This accuracy may suggest that 

although there is an asymmetry in the importance rankings for the 
left and right pupil models, the functioning of each pupil is very 
similar. A possible cause of this asymmetry is ocular dominance 
(i.e. the input for one eye is preferred over the other) [57,58]. It has 
been suggested that ocular dominance is not a static phenomenon, 
but will vary with changing horizontal gaze angle [59].

Figure 8: Plots for the pupil diameter prediction using model from opposite eye data. Pupil diameters are in millimeters.
a)	 True vs estimated left pupil diameter using the right pupil diameter model. 
b)	 True vs estimated right pupil diameter using the left pupil diameter model.
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The Illuminance Model

Figure 9 shows the results of the Illuminance model. We just saw 
above that if we know the light intensity we can accurately predict 
the pupil diameter, so now we `invert’ the experiment and ask the 
question, if we know the pupil diameter can we accurately estimate 
the light intensity? The model used the pupil diameters, gyroscope, 
and accelerometer data as the predictors. The estimates were some-

what accurate with correlation coefficients of 0.91 and 0.71 for the 
training and testing datasets, respectively. The top 2 predictors are 
the left and right pupil diameters, which agrees with first order 
considerations of the relationship between pupil diameters and 
external light levels. The next most important predictor was the 
acceleration in the z-direction (forward direction). Which may 
again be correlated with participant focus on obstacle navigation.

Figure 9: Plots for the Illuminance model. 
a)	 True vs estimated illuminance in lux. 
b)	 Predictor importance estimates for the illuminance model.

Pupil Diameter and Illuminance

In a first  order consideration, we can expect the pupil diameter 
to be inversely proportional to the illuminance. This is depicted 
in Figure 10, which gives 3 scatter plots of the average, left, and 

right pupil diameters vs illuminance. At low illuminance values, the 
expected inverse relationship is apparent. At higher values (> 4000 
lux) this expectation fails. The lack of a clear relationship between 
the two variables in all situations is likely the main contributor to 
the failure of previous models (Figure 1).

Figure 10: Log scale scatter plots of the pupil diameters vs illuminance. Data from walks 1, 2, and 3 are distinguished by the 
colors red, green, and blue, respectively. Data points with low opacity have illuminance values above 4000 lx. Note below the 
4000 lx mark the variables tend to have an inverse relationship. 
a)	 Average pupil diameter vs illuminance. 
b)	 Left pupil diameter vs illuminance. 
c)	 Right pupil diameter vs illuminance.
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The Environment

The normalized spectral irradiance at every time step for each 
trial is given in Figure 3. Normalized values were computed by di-
viding all irradiance values by the largest irradiance within each 
trial. Spectral lines are plotted for 528, 563, 567, and 776 nm, based 
on the top 3 most important predictors across all pupil diameter 
models (see Figures 4b, 5b, 6b, & 7b). Where predictors of the spec-
tral irradiance at 561, 562, and 568 nm were disregarded in lieu of 

the irradiance at 563 and 567 nm.

Temporal discontinuities in the spectra are due to those time 
intervals in which the participant walked in and out of shaded areas 
and/or away from the sun, which resulted in orders of magnitude 
differences in the spectral irradiance. Figure 11 depicts the nor-
malized spectral irradiance plotted on a log scale. Time intervals 
colored predominately red represent outdoor spectra, while more 
colorful intervals are indoor.

Figure 11: The log of the normalized spectral irradiance at every time step for all walks is plotted. The irradiance is normalized 
prior to taking log by dividing all values by the maximum spectral irradiance within each walk. Relative sizes of irradiance 
values are indicated by the color bar. Spectral lines at 528, 563, 13, 567, and 776 nm represent wavelengths of the most important 
predictors for the pupil diameter models.
a)	 Walk 1 measurements during late afternoon (≈ 4PM). 
b)	 Walk 2 measurements during morning (≈ 8:30 AM).	
c)      Walk 3 measurements during late afternoon (≈ 4PM).
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Limitations
The high level of infrared noise caused significant drawbacks 

in the data analysis. Further developments may require light 
intensities and spectra to be within a non-disruptive range. Another 
solution may be to utilize an eye tracking instrument which uses 
visible light to estimate the pupil diameters.

Future Directions
Pupil size along with other autonomic responses such as heart 

rate variability, galvanic skin response, and core temperature 
changes have been associated with cognitive load and performance 
[5-11]. Although cognitive load is a significant contributor to the 
provocation of these responses, in a dynamic outdoor environment 
and while performing a physical activity (such as walking or 
cycling) it is not always clear which responses were due to external 
stimuli or cognitive status. Using a similar approach to the one used 
here, future data collection will expand the number of participants, 
environments, cognitive tasks, and biometric sensors.

Looking forward, multiple participants will allow for the as-
sessment of the inter-person variability of the models, including 
parameters such as age and body composition. Different environ-
ments will vary in light intensity, air quality, elevation, and tem-
perature. Environmental variables can be measured using mobile 
weather stations mounted on a participant or bicycle. Other envi-
ronmental sensors such as a video camera, microphone, and LIDAR 
can indicate dynamic field situations and track events. Tasks such as 
walking and cycling will be performed. Cyclist performance can be 
assessed via bicycle speed and biometric data. Biometrics such as 
Electroencephalography (EEG), Heart Rate (ECG), Galvanic Skin Re-
sponse (GSR), body temperature, Electromyography (EMG), blood 
oxygen level, and respiration will be considered and modeled. The 
ranking of predictor importance for these biometric models can 
help identify important relationships between environmental stim-
uli and different autonomic response.

Conclusion
Past formulae for predicting pupil diameter mainly considered 

total ambient light levels via luminance [2,15-21], these models 
could not capture the fully multi-variate and non-linear dependence 
of pupil diameter on the environmental state, and consequently had 
poor generalization. When considering the spectrum of light from 
360-780 nm (ultra-violet to near infrared) in lieu of the luminance, 
we were able to derive a very accurate empirical machine learning 
model which can predict pupil diameters with a minimum fidelity    
of 96.9%. The machine learning also allowed us to identify that 
the most important wavelengths in predicting the pupil diameters 
were around 562 nm (green), which is near the peak absorbance of 
the long-wave photo-receptive cones (562.8 ± 4.7 nm) [3].
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