MCLON3 and LMCD1 May Play a Vital Role in Young Colorectal Cancer with Poor Prognosis

Zhenyuan Qian*,1,2, Qicong Zhu1,2, Yiping Mou1,2, Yong Han3, Ke Chen1,2 and Xujun He1-3

1Department of Gastrointestinal and Pancreatic Surgery, China
2Key Laboratory of Gastroenterology of Zhejiang Province, China
3Clinical Research Institute of Zhejiang Provincial People’s Hospital, China

*Corresponding author: Zhenyuan Qian, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Key Laboratory of Gastroenterology of Zhejiang Province, 158 Shangtang Road, Hangzhou 310014, Zhejiang Province, China

ARTICLE INFO

Received: May 14, 2019
Published: May 22, 2019

Citation: Zhenyuan Q, Qicong Z, Yiping M, Yong H, Ke Chen, Xujun H. MCLON3 and LMCD1 May Play a Vital Role in Young Colorectal Cancer with Poor Prognosis. Biomed J Sci & Tech Res 18(2)-2019. BJSTR. MS.ID.003123.

ABSTRACT

Colorectal cancer is common and dangerous. Usually people over 50 years‘ old should pay more attention to themselves when several signatures show out, such as repeated abdomen pain, black stool and abnormal thin. In some cases, colorectal cancer may have been suffered from. Nowadays more and more younger patients, however, have also been clouded with this terrible problem. What’s more, younger in age may mean younger in tumor, in another word, there is nothing can be promised with treatments and prognosis in young patients. Instead, many young patients live without quality in short time from diagnosed to died. In this study, we focus on this type of patients, aiming to find out several upregulated or downregulated genes by bioinformatics analysis and provide therapeutic candidates. We compare the difference in gene expression levels between the patients younger than 46 with less than 36 months’ disease free survival and the patients older than 46 with more than 60 months’ disease free survival across a colorectal cancer microarray database, which contains 585 samples and their clinical and pathological information, such as tumor location, stage, mismatch repair (mmr) status, CpGislandmethylatphenotype (cimp), chromosomal instability (cin), and the expressions of tumor protein p53(tp53), Kirsten rat sarcoma viral oncogene homolog(kras) and B-Raf proto-oncogene(braf).

As a result, cyp24a1, mcoln3, lmcd1 and cntn1 are found to be upregulated in the young colorectal cancer with poor prognosis. And then we explored the potential relationship between the four upregulated genes, and these provided information of 585 samples, which are proved vital to the generation, development and outcome of colorectal cancer. Eventually, we discovered that mcoln3 and lmcd1 are upregulated in the patients of proximal colorectal cancer with the status of dmmr, cimp or braf mutation, and lmcd1 is prone to happening mutation in the late stages of 3 or 4. In conclusion, cyp24a1, mcoln3, lmcd1 and cntn1 are found to be upregulated in the young colorectal cancer with poor prognosis. But more common in all ages, and there is a tendency that colorectal cancer rising in the young group. What’s more, many young patients got a disappointed outcome eventually though had received radical operations, chemotherapies and other treatments.

Introduction

Background

Colorectal cancer is one of the most common malignancies in digest organs. Patients may suffer from this problem in all ages but be more inclined to happen after 50 years’ old. However, there is a tendency that colorectal cancer rising in the young group. What’s more, many young patients got a disappointed outcome eventually though had received radical operations, chemotherapies and other treatments.
or many other active therapeutic treatments. Situation may be more complex that in some cases, young patients have a much poorer prognosis than aged patients even with an earlier stage or a higher differentiated type. However, in other cases, parts of young patients have an excellent outcome after operation. As is known, the deficiency of mmr is suggested as a cause of colorectal cancer. The status of cimp and cin are also considered important to the formation and development of cancer. The mutation of tp53, kras and braf have an impact on the prognosis and indirect therapeutic targets. Therefore, we want to pursue something to this problem that is there any signature or molecular mark can we apply for predicting the outcome and becoming potential therapeutic targets? In order to settle this problem, we studied deep into the database of GSE40967 on the platform of GPL570, which includes 585 samples and complete clinical and pathological information.

Materials and Methods

Ethics statement. The databases searched in our study are available online. Anyone is permitted to use all the data in the website of Array Express (http://www.ebi.ac.uk/arrayexpress/), which contains more than 65 thousands of experiments and about 2 millions of assays. It also supports for a search facility to get what type of array and the related information we want. All the gene expression omnibus datasets are also accessible to public from the GEO website (www.ncbi.nlm.nih.gov/geo/). Selection of databases. We searched in the Array Express with the condition of colorectal adenocarcinoma, filtered by organism of homo sapiens, experiment type of array assay and rna assay. As a result, 479 experiments satisfied were searched out. According to the data-integrity and sample quantity, we focus on the datasets of GSE40967 on the platform of GPL570, which contains 585 samples and records the details of age, sex, tumor location, stage, chemotherapy, overall survival(os), disease free survival(dfs), mmr, cimp, cin, tp53, kras and braf. Information of this dataset can be reviewed in Table 1.

Table 1.

<table>
<thead>
<tr>
<th>Samples</th>
<th>age<46</th>
<th>>=46</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td><46</td>
<td>40</td>
</tr>
<tr>
<td>sex</td>
<td>M</td>
<td>323</td>
</tr>
</tbody>
</table>

Table 2.

<table>
<thead>
<tr>
<th>age<46, dfs<=36months</th>
<th>age>=46, dfs>=60months</th>
<th>χ²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>age(median)</td>
<td>n=12</td>
<td>n=202</td>
<td></td>
</tr>
<tr>
<td>dfs(median)</td>
<td>0.5</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>sex(m/f)</td>
<td>6-Jun</td>
<td>107/95</td>
<td></td>
</tr>
<tr>
<td>stage(1or2/3or4)</td>
<td>8-Apr</td>
<td>128/74</td>
<td></td>
</tr>
<tr>
<td>location(p/d)</td>
<td>9-Mar</td>
<td>76/126</td>
<td></td>
</tr>
<tr>
<td>chemo(y/n)</td>
<td>4-Jun</td>
<td>87/115</td>
<td></td>
</tr>
<tr>
<td>mmr(dmmr/pmmr)</td>
<td>0/11</td>
<td>17/149</td>
<td></td>
</tr>
<tr>
<td>cimp(-/+</td>
<td>Sep-00</td>
<td>140/27</td>
<td></td>
</tr>
</tbody>
</table>
Every sample has recorded whole or parts of details of age, sex, tumor location, stage, chemotherapy, os, dfs, mmr, cimp, cin, tp53, kras and braf. And then the difference of the four genes’ expression was compared according to subgroups of sex, tumor location, stage, mmr, cimp, cin, tp53, kras and braf by two-independent-samples-test (p<0.05) in the software of spss16.0. Subgroups of nine valuables. To compare the difference of the four genes’ expression, sex subgroups were classified as male or female group, tumor locations were classified as proximal and distal colorectal cancer, stages were classified as 1/2 and 3/4, mmr status were classified as dmmr(mmr-deficient) and pmmr(mmr-proficient), cimp and cin status were classified as “–” and “+” respectively, and mutations of tp53, kras and braf were classified as mutation and wild type respectively. The design of this study shows as in Chart 1.
Results

Genes of the two groups were compared by TOP250, and those with adj.p.val smaller than 0.05 and the magnitude of logFC bigger than 0.6 would be selected out. Five genes were found upregulated in the group of patients younger than 46 and with dfs less than 36 months, one of which was not available of the gene symbol or title, and the other four were cytochrome P450, family 24, subfamily A, polypeptide 1(CYP24A1), mucolipin 3(MCOLN3), contactin 1(CNTN1) and LIM and cysteine-rich domains 1(LMCD1) respectively (Table 3). After a re-comparison of the four available genes’ expression, including CYP24A1, MCOLN3, CNTN1, and LMCD1, in the different condition of sex, tumor location, stage, mmr, cimp, cin, Kras, and braf in the 585 samples of the database of GSE40967 on the platform of GPL570, MCOLN3 and LMCD1 were thought to be two special genes. The MCOLN3 gene was found to be over-expressed in the proximal colon cancers (p=0.024), and in the status of mmr-deficient (p=0.014), cimp positive (p=0.008) and mutant type of braf (p=0.019) (Table 4). The LMCD1 gene was found to be over-expressed in the proximal colon cancers (p=0.000), in the TNM stage of 3 or 4 (p=0.004), and in the status of mmr-deficient (p=0.005), cimp positive (p=0.003) and mutant type of braf (p=0.007) (Table 5).

Table 3

<table>
<thead>
<tr>
<th>ID</th>
<th>adj.P.Val</th>
<th>P.Value</th>
<th>t</th>
<th>B</th>
<th>logFC</th>
<th>Gene.symbol</th>
<th>Gene.title</th>
</tr>
</thead>
<tbody>
<tr>
<td>206504_at</td>
<td>0.00639</td>
<td>1.17E-07</td>
<td>-5.48</td>
<td>6.1376</td>
<td>-0.792</td>
<td>CYP24A1</td>
<td>cytochrome P450, family 24, subfamily A, polypeptide 1</td>
</tr>
<tr>
<td>220484_at</td>
<td>0.03082</td>
<td>3.03E-06</td>
<td>-4.8</td>
<td>3.564</td>
<td>-0.782</td>
<td>MCOLN3</td>
<td>mucolipin 3</td>
</tr>
<tr>
<td>227209_at</td>
<td>0.03521</td>
<td>4.51E-06</td>
<td>-4.71</td>
<td>3.2492</td>
<td>-0.653</td>
<td>CNTN1</td>
<td>contactin 1</td>
</tr>
<tr>
<td>242767_at</td>
<td>0.04397</td>
<td>9.94E-06</td>
<td>-4.53</td>
<td>2.6265</td>
<td>-0.603</td>
<td>LMCD1</td>
<td>LIM and cysteine-rich domains 1</td>
</tr>
<tr>
<td>241470_x_at</td>
<td>0.04138</td>
<td>6.44E-06</td>
<td>-4.63</td>
<td>2.9683</td>
<td>-0.782</td>
<td>unavailable</td>
<td>unavailable</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>mclon3</th>
<th>N</th>
<th>mean</th>
<th>sd</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>231</td>
<td>3.57</td>
<td>0.599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>352</td>
<td>3.45</td>
<td>0.59</td>
<td>2.26</td>
<td>0.024</td>
</tr>
<tr>
<td>mmr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dmmr</td>
<td>76</td>
<td>3.67</td>
<td>0.616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pmmr</td>
<td>442</td>
<td>3.48</td>
<td>0.607</td>
<td>2.46</td>
<td>0.014</td>
</tr>
<tr>
<td>cimp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>405</td>
<td>3.48</td>
<td>0.614</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>92</td>
<td>3.67</td>
<td>0.579</td>
<td>-2.66</td>
<td>0.008</td>
</tr>
<tr>
<td>braf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt</td>
<td>463</td>
<td>3.49</td>
<td>0.596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>50</td>
<td>3.72</td>
<td>0.661</td>
<td>-2.4</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>lmcd1</th>
<th>N</th>
<th>mean</th>
<th>sd</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>231</td>
<td>4.14</td>
<td>0.621</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>352</td>
<td>3.96</td>
<td>0.487</td>
<td>3.75</td>
<td>0</td>
</tr>
<tr>
<td>stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0or1or2</td>
<td>314</td>
<td>3.97</td>
<td>0.451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3or4</td>
<td>269</td>
<td>4.11</td>
<td>0.641</td>
<td>-2.9</td>
<td>0.004</td>
</tr>
<tr>
<td>mmr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dmmr</td>
<td>76</td>
<td>4.24</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pmmr</td>
<td>442</td>
<td>4.01</td>
<td>0.545</td>
<td>2.85</td>
<td>0.005</td>
</tr>
<tr>
<td>cimp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>405</td>
<td>4.02</td>
<td>0.535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>92</td>
<td>4.2</td>
<td>0.539</td>
<td>-2.99</td>
<td>0.003</td>
</tr>
<tr>
<td>braf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt</td>
<td>463</td>
<td>4.03</td>
<td>0.561</td>
<td>-2.7</td>
<td>0.007</td>
</tr>
<tr>
<td>m</td>
<td>50</td>
<td>4.26</td>
<td>0.527</td>
<td>-2.7</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Discussion

The colorectal cancer occurs usually over 55 years old. In recent years, the incidence of colorectal cancer has become much higher in the young people with poorer prognosis. This phenomenon has been recognized but haven’t be illustrated well until now. Some factors in the young related to several known molecular mechanisms may explain that. MMR (mismatch repair), correcting mismatched nucleotides and insertion-deletion loops in DNA, is one important signal way [1,2]. CIMP (CpGislandmethylatephenotype) is associated with key factors related to worse disease outcome. Several studies had proved CIMP positive MSS BRAF mutated tumors living a particularly bad prognosis [3-8]. 10–20% of CRCs,
have been found CIMP-positive associated with BRAF mutations [9].
CIN (chromosomal instability), which is characterized by structural
or numerical chromosomal alterations, is detected in 85% of CRCs
[10]. CIN can induce cancer development and progression and is
associated with poor prognosis and drug resistance in CRC [11-
14]. Other molecular events, such as hypermethylation phenotype
(CIMP+) [15,16], kras, braf and tp53 also have been thought as key
impacts on CRC.

In order to find genes intensively related to colorectal cancer
in young adult, we took advantage of datasets of GSE40967 on the
platform of GPL570, which contains 585 samples and records the
details of age, sex, tumor location, stage, chemotherapy, overall
survival, disease free survival, mmr, cimp, tp53, kras and braf.
CYP24A1, MCOLN3, CNTN1 and LMCD1 were statistically thought
to be special in the young patients. What’s more, MCOLN3 and
LMCD1 were relevant with some important molecular events in
colorectal cancer and may play a role in this process. The expression
of the both genes is much higher in the event of dmmr, cimp mutant
and braf mutant. In which, the expression of LMCD1 accelerates
in the stage of III or IV. In human, the MCOLN3 gene resides on
the short arm of chromosome 1 at 1p22.3. The encoded protein,
TRPML3, has 553 amino acid with a predicted molecular weight
of 64 kDa. TRPML3 is an inwardly-rectifying cation channel [17], and
one of the largest families of cation channels [18]. TRP channels
are involved in regulating various cellular functions, ranging from
pure sensory function to molecular regulation, hence they serve as
gatekeepers for transcellular transport of sodium and calcium ions
[19,20]. TRPML3 is involved in autophagy regulation [21,22].

As known, cancer progression is closely related to
dysregulations of the cell cycle and are accompanied by enhanced
cell proliferation and/or suppression of apoptosis leading to cell
death [23]. In contrast, degenerative processes are initiated by
either enhanced cell death and/or suppression of cell proliferation.
The key factors between these opposing biological processes often
lead to a perturbed balance between the processes of proliferation,
autophagy, and apoptosis [24]. Ca2+ is one of the most important
regulators of cell survival/death processes. As a second messenger,
Ca2+ is able to activate or inactivate various regulatory proteins
such as enzymes, transcriptional factors, or molecular chaperones.
Importantly, Ca2+signaling has been shown to regulate cellular
processes such as cell proliferation, survival, migration, invasion,
motility, autophagy and apoptosis [25-27]. Recent studies by
Kim et al. showed that over expression of TRPML3 leads to
increased autophagy in HeLa cells and that TRPML3 channels are
engaged to autophagosomes upon induction of autophagy [28].
Heteromultimerization of TRPML channels also have been shown
to have a role in autophagy [29].

A recent study showed that TRPML3 interacts with mammalian
ATG8 homologue GATE16 to regulate autophagy, thereby
suggesting a vital role of TRPML3 in autophagosome maturation
through the interaction with GATE16 [30]. LMCD1,LIM and cysteine
rich domains 1, encodes a member of the LIM-domain family of
zinc finger proteins [31]. The protein may act as a co-regulator
of transcription along with other transcription factors. In other
hand, LMCD1 is a novel pathway to upregulate Rac1 signaling,
enhanced lamellipodia extension and cellmobility in vitro and
in vivo [32]. Upregulation of LMCD1 through amplification is a
necessary factor for cell migration, which has been found in HCC
cells. Somatic alterations of LMCD1 have important roles in HCC
tumor progression especially tumor cell migration and metastasis
[33]. Mutant LMCD1 is a putative HCC proto-oncogene involved in
dysregulated Rac1 signaling which results in actin cytoskeleton
re-organization and facilitates cell migration and metastasis.
In summary, this study finds four genes, CYP24A1, MCOLN3, CNTN1
and LMCD1, related to the young CRC patients with poor prognosis.
Especially the MCOLN3 and LMCD1 are tightly related to some
unknown molecular pathway in tumorgenesis and progression of
CRC, which may prove further diagnostic or therapeutic targets.

Acknowledgment

We thank Key Laboratory of Gastroenterology of Zhejiang Province and the Clinical Research Institute of Zhejiang Provincial People’s Hospital for helpful suggestion and guidance.

Foundation Support

This work was financed by Grant-in-aid for scientific research from the Zhejiang Provincial Natural Science Foundation for the Youth of China (No. LQ18H160023).

Human and Animal Rights

There was no medical or experiment treatment violating human or animal rights in this manuscript.

References

ISSN: 2574-1241
DOI: 10.26717/BJSTR.2019.18.003123

Zhenyuan Qian, Biomed J Sci & Tech Res

This work is licensed under Creative Commons Attribution 4.0 License
Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us
- Global archiving of articles
- Immediate, unrestricted online access
- Rigorous Peer Review Process
- Authors Retain Copyrights
- Unique DOI for all articles

https://biomedres.us/