Airway Remodeling in the Asthma Model: Is there Standardization in this Evaluation?

Lidiane Maria Boldrini Leite*, Pedro Vicente Michelotto Jr, Sérgio Adriane Bezerra de Moura, Paulo Roberto Slud Brofman and Alexandra Cristina Senegaglia*

1Core for Cell Technology, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
2Department of Animal Science, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
3Department of Morphology, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
*Corresponding author: Alexandra Cristina Senegaglia, Core for Cell Technology, Curitiba, Paraná, Brazil

Introduction

Asthma is a chronic inflammatory disease characterized by obstruction of airflow causing respiratory difficulties at various intensities [1]. It represents a major cause of physical disability, affecting 300 million people worldwide [2]. Airways inflammation has an important role in the pathophysiology of asthma. The inflammatory process in the airways promotes significant changes in the respiratory structures called airway remodeling, which represents a late and permanent response to tissue injury. This review aimed to emphasize the importance of histological evaluation of airway remodeling in the asthma experimental model. There are several methods of histopathological analysis available today, but the implementation of a standardized methodology would help in the damages caused by the allergens and future assessments of possible therapies used to treat the disease.

Keywords: Asthma; Airway; Airway Remodeling; Histological Evaluation

Abbreviations: TH2: T helper 2; IgE: Immunoglobulin E; OVA: Ovalbumin; H&E: Hematoxylin & Eosin; PAS: Periodic-Schiff Acid; MT: Masson’s Trichrome
against environmental influences. Its function is dependent of cell integrity and protein interaction in junctional intercellular complexes, especially the Tight Junctions. Failure in this complex makes the epithelium permeable to allergens and other agents to airway tissue [8]. In the case of asthma, due to the metaplasia and hyperplasia of the goblet cells, the mucus hypersecretion has contributed intensively to the morbidity and mortality due to this disease, because before an inflammatory process, the increased mucus production causes the narrowing of the airways and asphyxia, which may result in death [9]. The currently available treatments minimize the symptoms in the patients, reducing the inflammation. However, there is still no therapy that prevents or reverses the changes resulting from airway remodeling.

1) Presence of inflammatory infiltrate,
2) Muscle thickening,
3) Epithelial thickening,
4) Epithelial cells desquamation into the lumen of the bronchioles.

Figure 1: Lung histological sections of Balb/c mice. A. Airway showing aspect of normality. B. Airway with an intense lung remodeling. Magnification: 200x.

Asthma Experimental Model

Preclinical models have been widely used in the search for understanding the pathophysiological events responsible for the development of asthma. Several aspects of this complex disease have been investigated experimentally, and it is hoped that further progress in this area will facilitate the development of new effective therapeutic approaches [10]. However, most of the studies used the murine, in which the Balb/c [11,12] and C57BL/6 [13,14] lineage is highlighted. Balb/c and C57BL/6 mice are isogenic animals that develop a strong TH2 immune response with increased IgE levels after exposure to ovalbumin (OVA), a gold standard allergen for assessing the allergic response [15,16]. The experimental asthma models in mice do not accurately reproduce the human disease, since the clinical signs are difficult to investigate. However, animal models have aided in understanding the pathophysiological mechanisms inherent to the disease and in identifying new targets for therapeutic interventions and potential treatments [17].

Airway Remodeling Evaluation

Usually, at the end of the experimental asthma study, the mice are submitted to euthanasia mainly by anesthetic overdose [18] or cervical dislocation [11]. The lungs are then removed and fixed in formalin or paraformaldehyde. After this time, the lungs are transferred to cassettes and processed by histological techniques. Then, the remodeling could be evaluated in lung histological sections through the staining: Hematoxylin & Eosin (H&E), Periodic-Schiff Acid (PAS) and Masson’s Trichrome (MT) but, there are many variables in the procedures used (Table 1). The H&E staining allows the lung morphology evaluation, the presence and inflammatory infiltrate intensity in the peribronchiolar, perivascular and adjacent area, the smooth muscle layer thickening and changes in the epithelium, with emphasis on cellular desquamation for the lumen of the bronchioles. PAS can identify the mucus produced by goblet cells and the distribution of these cells. The MT identifies collagen deposition in the peribronchiolar and perivascular region in the histological sections [19]. Lung histological involvement is a relevant aspect of asthma, there is no established standard of assessment. We believe that all the criteria are important, but the standardization of tissue damage analysis could help researchers to reproduce protocols available in the literature and ensure the effectiveness of the experimental model developed. As each investigator uses a different method of airway remodeling evaluation, it is difficult to compare results involving new therapies for asthma, since the baseline condition of the disease may not be the same for the different conditions evaluated.
Table 1: Evaluation methods of airway remodeling in asthma induction model. Staining: Hematoxylin & Eosin (H&E), Periodic-Schiff Acid (PAS) and Masson’s Trichrome (MT).

<table>
<thead>
<tr>
<th>Article</th>
<th>Histological procedure</th>
<th>Evaluation</th>
<th>H&E</th>
<th>PAS</th>
<th>MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dai et al. [18]</td>
<td>10% formalin</td>
<td>5 airway sections</td>
<td>Scoring system: Scale from 0 to 5 for inflammatory infiltration in the peribronchiolar area.</td>
<td>Scoring system: Scale from 0 to 5 for PAS-positive cells</td>
<td>Subepithelial fibrosis was evaluated by the Digimizer software. The area of collagen deposition and the perimeter of basement membrane of bronchioles were measured, and it was evaluated by scoring system: Scale from 0 to 5.</td>
</tr>
<tr>
<td>Leite et al. [19]</td>
<td>10% buffered formalin</td>
<td>30 bronchioles (15 from each lung)</td>
<td>Scoring system: Scale from 0 to 3</td>
<td>PAS-positive cells were evaluated into 8 regions and then by scoring system: Scale from 0 to 3.</td>
<td>Scoring system: Scale from 0 to 3.</td>
</tr>
<tr>
<td>Goodwin et al. [20]</td>
<td>4% paraformaldehyde</td>
<td>4 airways per animal</td>
<td>Scoring system: Scale from 0 to 3 for the presence and intensity of peribronchial infiltrate</td>
<td>Not investigated</td>
<td>Not investigated</td>
</tr>
<tr>
<td>Kang et al. [21]</td>
<td>4% neutral buffered formalin</td>
<td>8 fields</td>
<td>Scoring system: Scale from 0 to 3 for peribronchial and perivascular inflammation, thicknesses of epithelium and smooth muscle layer.</td>
<td>Five-point scoring system was used for evaluating goblet cell hyperplasia. Scale from 0 to 4</td>
<td>Not investigated</td>
</tr>
<tr>
<td>Ou-Yang et al. [22]</td>
<td>Formalin</td>
<td>Not specified</td>
<td>Scoring system: Scale from 0 to 4 for peribronchial and perivascular inflammation</td>
<td>Not investigated</td>
<td>Not investigated</td>
</tr>
<tr>
<td>Ge et al. [23]</td>
<td>4% paraformaldehyde</td>
<td>Not specified</td>
<td>Image Pro-Plus software was used to identify cellular inflammation. Scoring system: Scale from 0 to 4</td>
<td>Scoring system: Scale from 0 to 4 for PAS-positive goblet cells</td>
<td>The ratio of the area of trichrome staining to the basement membrane perimeter was measured for quantify collagen deposition</td>
</tr>
<tr>
<td>Mohammadian et al. [24]</td>
<td>Formalin</td>
<td>5 airway sections</td>
<td>Scoring system: Scale from 0 to 5 for peribronchial inflammation.</td>
<td>Scoring system: Scale from 0 to 5. PAS-positive cells</td>
<td>Subepithelial fibrosis was assessed using the Digimizer software. The area of collagen deposition and the perimeter of basement membrane of bronchioles were measured, and it was evaluated by scoring system: Scale from 0 to 5.</td>
</tr>
<tr>
<td>Ogulur et al. [25]</td>
<td>10% formalin</td>
<td>Airways were classified according to their diameter (distal or proximal)</td>
<td>A minimum of 5 points of each airway was measured for evaluate epithelium thicknesses, smooth muscle layers and basement membrane</td>
<td>A total of 500 goblet cells were counted</td>
<td>Not investigated</td>
</tr>
<tr>
<td>Royce et al. [26]</td>
<td>10% neutral buffered formalin</td>
<td>Five airways per section</td>
<td>Not investigated</td>
<td>Goblet cell were analyzed using Image Scope software</td>
<td>Scoring system: Scale from 0 to 4 for peribronchial inflammation. Epithelial thickness and subepithelial deposition were measured.</td>
</tr>
<tr>
<td>Bonfield et al. [27]</td>
<td>10% formalin</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not investigated</td>
<td>Not specified</td>
</tr>
</tbody>
</table>

Conclusion

Airway remodeling is a result of significant tissue changes induced by repeated injury and repair processes in individuals with asthma. There are several methods of histopathological analysis available today, but the implementation of a standardized methodology would help in the damages caused by the allergens and future assessments of possible therapies used to treat the disease.
References

ISSN: 2574-1241
DOI: 10.26717/BJSTR.2019.15.002655

Alexandra CS, Lidiane Maria BL, Biomed J Sci & Tech Res

This work is licensed under Creative Commons Attribution 4.0 License

Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us
- Global archiving of articles
- Immediate, unrestricted online access
- Rigorous Peer Review Process
- Authors Retain Copyrights
- Unique DOI for all articles

https://biomedres.us/