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ARTICLE INFO abstract

The basic model usually used in disease mapping is the Besag, York and Mollie 
(BYM) model, which combines two random effects, a spatially structured and a spatially 
unstructured random effect. Bayesian Conditional Autoregressive (CAR) model is a disease 
mapping method that is commonly used for smoothening the relative risk of any disease 
as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually 
assigned as a prior to one of the spatial random effects in the BYM model, successfully 
uses information from adjacent sites to improve estimates for individual sites. However, it 
has been pointed out that there exist some unrealistic or counterintuitive consequences 
on the posterior covariance matrix of the CAR prior for the spatial random effects. In 
the conventional BYM (Besag, York and Mollie) model, the spatially structured and the 
unstructured random components cannot be seen independently, and which challenges 
the prior definitions for the hyperparameters of the two random effects. Therefore, 
the main objective of this study is to utilize some spatial CAR models for flexibility as 
applied to tuberculosis (TB) disease mapping. The extended Bayesian spatial CAR model 
is proved to be a useful and a little robust tool for disease modeling and as a prior for the 
structured spatial random effects because of the inclusion of an extra hyperparameter. A 
Bayesian modeling approach by the Integrated Nested Laplace Approximation method 
(INLA) is used to estimate model parameters and comparison was made by the deviance 
information criterion (DIC).

Introduction
Disease mapping can be described as a technique for the 

presentation and estimation of summary procedures of spatially 
observed health outcomes. The increased and improved handiness 
of georeferenced data and flexible computational software has 
increased in the application of disease mapping in the areas of 
epidemiology and public health [1,2]. Disease mapping can also 
be used to define the geographical disparity of diseases, to detect 
clustering of diseases and to produce diseases maps. Some authors 
have given a good number of statistical reviews on disease mapping 
[3-7]. The main and central model employed for a univariate 
disease mapping is the Besag, York and Mollie (BYM) model and 
was proposed by [8]. This model is a type of the generalized linear 
mixed effects model, which has two spatial random effects; one  

 
which is spatially unstructured and modeled using a normal prior 
and another, a spatially structured random effect which is modeled 
by an intrinsic conditional autoregressive (CAR) prior.

A notable challenge in spatial analyses is the problem of spa-
tial autocorrelation. Modelling the spatial interfaces that arise in 
spatially referenced data is normally carried out by integrating the 
spatial dependence into the covariance structure either explicitly 
or indirectly through autoregressive models. For lattice data, the 
two commonly used autoregressive models are the conditional au-
toregressive model (CAR) and the simultaneously autoregressive 
model (SAR). Bayesian Conditional Autoregressive (CAR) model 
is a technique used in disease mapping and which is used for the 
smoothening of relative risk [9]. This model provides some shrink-
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age and spatial smoothing of the raw relative risk estimate, which 
gives a steadier estimate of the outline of underlying risk of disease 
than that given by the raw estimates. This technique effectively bor-
rows information from neighboring areas other than from far away 
areas and smoothing local rates toward local neighboring values. 
This decreases the variance in the associated estimates and allows 
for the spatial effect of regional differences in State populations.

Conditional autoregressive (CAR) models are regularly used for 
describing the spatial variation of quantities of interest in the form 
of aggregates over subregions. These models have been used to an-
alyze data in various capacities, such as in demography, economy, 
epidemiology and geography. The general objective of these spatial 
models is to show and quantify spatial relations present among the 
data, in specific terms, to quantify how quantities of interest differ 
with explanatory variables and to also to identify clusters of ‘hot 
spots. General versions of CAR models, a class of Gaussian Markov 
random fields, appear in [10-12]. CAR models have been broadly 
applied in spatial statistics to model observed data [13-16] as well 
as (unobserved) latent variables and spatially varying random ef-
fects [17,18] CAR model was first introduced by [19] and the Hi-
erarchical disease-mapping models based on CAR was studied by 
[20] These CAR models yield spatial dependence in the covariance 
structure as a function of a neighbor matrix W, and regularly a fixed 
unknown spatial correlation parameter. The conditional autore-
gressive (CAR) and the intrinsic autoregressive models (ICAR) are 
extensively used as prior distributions for the structured random 
spatial effects in Bayesian models. However, some unrealistic or 
counterintuitive consequences on the prior covariance matrix or 
the posterior covariance matrix of the spatial random effects have 
been pointed out by some authors [21]. This study therefore seeks 
to propose, utilize and compare another latent Gaussian model, an 
extended CAR model, as a prior for this spatial dependency model 
for flexibility and better smoothing.

Epidemiological Data Sources

This is a retrospective secondary data source from Eastern Cape 
Province TB notification and survey data. All data used is an extract 
from the electronic tuberculosis register (ETR) records of TB cases 
from the twenty-four health sub-districts of the province including 
the two metropolitan municipalities. The data obtained was for the 
year 2014. This study was carried out in the Eastern Cape province 
of South Africa. The Province of the Eastern Cape is situated on the 
east coast of South Africa and lies between the Western Cape and 
KwaZulu-Natal provinces. The Northern Cape and Free State prov-
inces, as well as Lesotho shares borders with this Province. The 
Eastern Cape Province boasts of amazing natural diversity, stretch-
ing from the semi-arid Great Karoo to the forests of the Wild Coast. 
It also extends around the Keiskamma valley, the fertile Langkloof, 
and the mountainous southern Drakensberg region. The main fea-
ture of the Eastern Cape is its amazing coastline adjoining the In-
dian Ocean. The Province covers an area of 168 966km² and with 
a population of 6562 053(Statistics South Africa, Censuses 2011). 

The Province is situated at 32.2968°S and 26.4194°E of the country. 
The Eastern Cape is the second-largest province in South Africa by 
surface area and also the third-largest populated province with its 
capital in Bhisho. Port Elizabeth, East London, Grahamstown, Mtha-
tha (previously Umtata), Graaf Reinet, Cradock and Port St Johns 
are the major towns and cities in the province. The province is di-
vided into two metropolitan municipalities, and they are Buffalo 
City Metropolitan Municipality and Nelson Mandela Bay Metropol-
itan Municipality. It has six district municipalities, and which are 
further subdivided into 37 local municipalities.

Modelling the Spatial Dependency Structure

Generally, it seems reasonable to assume that areas that are 
close in space show more similar disease burden than areas that 
are not close. To be “close” here means that we need to set up a 
neighbourhood structure. A well-known assumption is to regard 
areas i and j as neighbours if they have a common border, repre-
sented here as i~j. This appears sensible if the regions are equally 
sized and organized in a regular pattern [3]. We further denote the 
set of neighbours of region i by δi and its size by nδi. 

Review of Some Common Spatial Dependency Models

The BYM Model: The assumption of the Besag model adopts 
that a spatially structured component cannot take the limiting form 
that allows for no spatially structured variability. Hence, unstruc-
tured random error or pure overdispersion within area i, will be 
modelled as spatial correlation, giving confusing parameter es-
timates [22]. To address this issue, the Besag-York-Mollie (BYM) 
model [23] splits the regional spatial effect b into a sum of an un-
structured and a structured spatial component, so that 

    .b v u= +

Here, 1(0, )vv Iτ −ℵ�  accounts for pure overdispersion, while 
1(0, )uu Qτ − −ℵ�  is the Besag model whereby Q− represents the gen-

eralized inverse of Q . The subsequent covariance matrix of b is 

1 1
,( )v v uuVar b I Qτ τ τ τ− − −= +  

 Intrinsic CAR (Besag) Model: The simplest of the CAR prior is 
the intrinsic model suggested by [8], which is given as
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where the parameter, τ, is the conditional precision. The pre-
cision is comparative to the number of neighbouring units, while 
the conditional expectation of ϕ_i is the mean of the random effects 
in the neighbouring areal units. The precision formulation here is 
functional, because you would expect the precision to be higher 
when you have more neighbouring areas and therefore more in-
formation to estimate the value of ϕi. These groups of conditional 
distributions agree to the multivariate normal distribution, with 
a zero vector mean. The improper precision matrix is given by 
Q=τ(diag(W1)-W), with W1, as a vector comprising the number of 
neighbors for each of the areal unit. One limitation of this model is 
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the lack of a parameter to regulate the strength of the spatial auto-
correlation; if you multiplied ϕ by 10, then the precision τ, would 
decrease, but the spatial structure does not change. This implies 
that the intrinsic model is only practical in circumstances where 
the spatial autocorrelation in the data is strong; however, it is not 
practical for situations where there is a weak or moderate spatial 
autocorrelation across the study area because the model would 
have a tendency to produce an overly smooth estimated risk sur-
face in these cases.

The Dean Model: [24] proposed a reparameterisation of the 
BYM model where

( )1 1
b

b v uφ φ
τ

= − +                                      (4)

having covariance structure

( ) ( )( )1 1, 1bVar b b I Qτ φ τ φ φ− −= − +                                     (5)

Equation (5) is a reparameterisation of the original BYM model, 
where τ_u^ (-1) =τ_b^ (-1) ϕ and τ_v^(-1) =τ_b^(-1) (1-ϕ) [25].

A New Besag2 ICAR Model for the Structured Spatial Ef-
fects: A modification of the Dean model in (2.42) was proposed by 
and which addresses both the identifiability and scaling issue of the 
BYM model. The model uses a scaled structured component μ_(i*) 
where τ is the precision matrix of the Besag ICAR model. The “Be-
sag2” is one of the models in the latent Gaussian field. The Besag2 
model is an extension to the Besag (ICAR) model above in (3.14). 

Paramerisation of the Besag2 Model

Let the random vector z=(x1,…,xn) be the “Besag” model (ICAR), 
then the “Besag2” is the following extensions

                                   ( ), /x az z a=                                           (6)

where a>0 is an additional hyperparameter and dim(x)=2n, 
and z is the same (a tiny additive noise) random vector.

Hyperparameters

This model has two hyperparameters θ= (θ1, θ2). The precision 
parameter τ is represented as

                             1 logQ tau=                                                         (7)

And the prior is defined on θ1.

The weight parameter a is signified as

                                          2  logaθ =                               (8)

And the prior is defined on θ2. The precision defines how equal 
the two copies of z is. This new prior is a member of the class of a 
latent Gaussian (LGMs) markov random field models and would be 

compared with the Besag ICAR, and the BYM models for flexibility 
and robustness.

Methods 

Bayesian Modeling Approach

Bayesian analysis rests upon computing the posterior proba-
bility distribution for model parameters. The posterior probability 
distribution is the conditional probability distribution of the un-
known parameters, given the observed data and weighted by the 
prior information. Bayesian modelling depends on the ability to 
compute posterior distributions in order to provide estimates for 
all the corresponding model parameters. Majority of these posteri-
or distributions are straightforward to calculate. Distributions with 
a conjugate prior typically have a posterior distribution which fol-
lows a standard distributional form.

Bayesian Inference

The prior distribution is the distribution of the parameter(s) 
before any data is observed, that is,

( )p θ α│ .

The prior distribution might not be easily determined. In this 
case, we can use the Jeffreys prior to obtain the posterior distribu-
tion before updating them with newer observations.

The sampling distribution is the distribution of the observed 
data conditional on its parameters, i.e.

( )p X θ│

This is also termed the likelihood, especially when viewed as a 
function of the parameter(s), sometimes written,

( ) ( ) | .L X p Xθ θ=│

The marginal likelihood (sometimes also termed the evidence) 
is the distribution of the observed data marginalized over the pa-
rameter(s), 

( ) ( ) ( )p X p X p dθα θ θ α θ= ∫│ │ │

The posterior distribution is the distribution of the param-
eter(s) after taking into account the observed data. This is deter-
mined by Bayes’ rule, which forms the heart of Bayesian inference

( ) ( ) ( )( ) ( )( )   ,   ) | ( ) (/ )p X p X p p X p X pθ α θ θ α α θ θ α= ∝│ │ │ │ │

In many cases, however, the computation required is more 
complex and a more advanced method is essential to calculate the 
posterior distribution. These advanced approaches usually make 
use of some form of numerical simulation, generally by drawing a 
sample of parameter values from an approximation of the posteri-
or distribution ( | )f Yθ  to allow estimation of the distributions of 
the model parameters (Table 1).
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Table 1: Comparison of priors for the structured random effects model at 97.5% C.I without covariates.

Spatial Models logpop i β_0 u_i v_i pD Parameter, a DIC

BYM 1.24 (0.26) 0.64 (1.37) 2725.85 1.45 23.90 - 263.12

ICAR 1.24 (0.26) 0.64 (1.35) 18433.50 1.44 23.90 - 263.12

Besag2 ICAR 1.29 (0.27) 0.46 (30.23) 18.83 1.44 23.89 0.05 (0.002) 263.08

Parameter Estimation by The Integrated Nested Laplace 
Approximation (INLA) Method

The marginal of the posterior are not always presented in 
closed form as a result of the non-Gaussian response variables. For 
such models, Markov chain Monte Carlo methods can be applied, 
but they are not without some complications, both in terms of con-
vergence and in computational time. In some practical uses, the 
level of these problems is such that Markov chain Monte Carlo is 
basically not a suitable tool for monotonous analysis.

It is shown in that by using the integrated nested Laplace ap-
proximation (INLA) method in its basic form, we can directly com-
pute very accurate approximations to the posterior marginal. The 
key advantage of these approximations is simply computational, as 
MCMC algorithms need hours and days to run, while INLA provide 
more exact estimates in seconds and in minutes. Another benefit 
with INLA method is its generality, which makes it possible to ex-
ecute Bayesian analysis in a programmed, streamlined way and to 
compute model comparison criteria and many predictive measures, 
so that models can be compared and the model under study can 
be tested. This method is also used where the model has a hidden 
Gaussian Markov Random field, with the parameters of interest be-
ing latent variables which are not observed directly but are instead 
inferred from other observed variables.

Considering the following hierarchical model,

( )i iY Poisson µ= 1,...,i n=

log( ) T
i i ixµ β θ= +                                                          (9)

Given that, 1( ,..., )nφ φ φ= comprise a set of random effects, which 
can be considered as a group of latent variables. Let be the set of 
hyperparameters relating to, then the marginal posterior for each 
variable iφ  is as follows:

1
( | ) ( , | )i iY Y d d

ω φ
π φ π φ ω φ ω

− −= ∫ ∫                                                   (10)

where, 1φ−  is the vectorφ  with element iφ  removed. This can 
be modified as

( | ) ( | , ) ( | )i iY Y Y d
ω

π φ π φ ω π ω ω= ∫                                     (11)

INLA involves the construction of a nested approximation of 
(5), which requires approximations of and . Here can be approxi-
mated using the following Laplace approximation

 
( ) ( )
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( )
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Y

π φ ω
π ω α φ φ ω

π φ φ ω
=

                                         (12)

where π ̃_c (ϕ_i│ϕ,ω,Y) is termed the Gaussian approximation 
to the full conditional distribution of and is the mode of the full con-
ditional distribution of for a given value of . The authors in propose 
using a Laplace estimate ( )| ,I Yπ φ ω of which takes the following 
form:

( ) ( ) ( ) ( ) ( )
~ ~

| , | , / | , , ) | *( , )i iLA Y Y G i i Y i i iπ φ ω απ φ ω π φ φ ω φ φ φ ω− − − − − − −− = − ∧       (13)

where π ̃_G (ϕ_(-i)│ϕ_i,ω,Y) is the Gaussian approximation to 
and as its modal value for a given ω  .

Although in most cases similar results will be obtained by 
MCMC and INLA inference, it should be noted that there are fun-
damental differences in the way that posterior distributions are 
estimated. MCMC can sample directly from a joint posterior distri-
bution, while INLA uses a closed form expression to estimate the 
marginal posterior distributions. For this study, we adopted the lat-
ter and the analysis was carried out in R. Models comparison were 
carried out using the Deviance Information Criterion (DIC), which 
pools together a measure of fit and a measure of model complexity 
based on the effective number of parameters. Smaller values of DIC 
show a more fitting model [26].

Model Comparison 

The comparison of numerous contending Bayesian models is 
usually a challenging task and needs special attention [27] Since 
the models used include sets of random effects, the Deviance Infor-
mation Criterion (DIC) shall be used for comparison. It is defined as 

 , logDIC D pd where D E L
− − ∧  = + = −     

 where is given as the mean posterior deviance and pd rep-
resents the actual number of parameters. When two or more mod-
els are compared, the model with the least DIC value would be 
adopted. Similar to the BIC, this approach penalises models which 
have superfluous parameters, and favours approaches which pro-
vide a sensible data fit while minimizing the amount of parameters. 
The best fitting model shall be the one with the smallest DIC value.

Statistical Analysis

Our working model is the usual BYM model which is a type of 
generalized linear mixed model (GLMM) with both fixed and ran-
dom effects;

1log k
i i i iky x bα β== +∑ +                (9)

where b is the random effects which are further broken into 
spatially structured, ui, and spatially unstructured, vi, random ef-
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fects. For this analysis, the standard Besag, York and Mollie convo-
lution model is adjusted with additive spatial random effects and 
then used to compare the priors for the structured random effect, 
u_i. An offset variable, log pop, of each region i, is used as a covariate 
in the model.

Model: 
( ) 0 ;  ~  ,  _ ~ \ " "i i i ilog Log pop v u v iid u i Besag ICARλ β= + + +

Three (3) multilevel models with only one covariate as an offset 
variable are hereby developed for comparison between the spatial 
models BYM, the intrinsic CAR and the new “Besag2” ICAR model 
with additive spatial random effects and given as:

Model 1: 

( ) 0 ;  ~  ,  _ ~i i i ilog Log pop v u v iid u i BYMλ β= + + +

Model 2: 

( ) 0 ;  ~  ,  _ ~i i i ilog Log pop v u v iid u i BesagICARλ β= + + +

Model 3: 

( ) 0 ;  ~  ,  _ ~i i i ilog Log pop v u v iid u i BesagICARλ β= + + +

Results 

Figure 1: Posterior estimated spatial maps of the structured 
random prior comparisons of BYM, Besag ICAR and the 
new “Besag2” ICAR spatial models respectively.

The results of a Bayesian disease-mapping analysis are pre-
sented in the form of maps displaying the spatial patterns of the 
three different CAR models in Figure 1. Table 1 shows the deviance 
information criterion for the three spatial CAR models in which 

the newly introduced two-parameter “Besag2” CAR model has the 
lesser deviance. For any model selection, deviance should be less 
and based on that, the Besag2 CAR model is fitted best out of the 
three models (Figure 2). Also, from the reparameterised “Besag2” 
ICAR model, which has the advantage of possessing two hyperpa-
rameters over the Besag ICAR prior with only one hyperparameter, 
the posterior estimates of the new prior gave significantly r educed 
variances for the two spatial components, and especially for the 
structured spatial component (σ=18.83), thereby making it to be 
considered as the best fit model. In terms of model choice criteria 
by DIC values, the three models perform at least equally well with 
current parameterisations, but only the Besag2 ICAR model offers 
parameters that are clearly interpretable and with better precision. 
The comparative spatial maps of the BYM and the usual ICAR mod-
els are very identical as shown in Figure 1. Spatial maps of ICAR 
and the new Besag2 ICAR models showed varying disease patterns 
when the two prior models were compared. The third model which 
utilized the new prior “Besag2” ICAR showed a better smooth and a 
more defined disease cluster and distribution. Also, the range of the 
posterior risks is reduced and better smoothed. 

Figure 2: Map of 
a. Eastern Cape Province showing the 37 local 
municipalities and the 2 metros and 
b. Extracted map from R showing the 24 health sub-
districts for the TB dataset.

Discussion

Disease mapping has a long history in epidemiology and one 
main objective is to examine the geographical distribution of dis-
ease burden. A disease mapping technique, which is usually used 
for smoothening of relative risk is the Bayesian Conditional Autore-
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gressive (CAR) model which has only one precision hyperparame-
ter, τ. This CAR model offers some shrinkage and spatial smoothing 
of the raw relative risk estimate, which gives a more stable estimate 
of the shape of the underlying risk of disease than that given by the 
raw estimates [28] Without suitable weighting that is characterized 
with the usual ICAR prior, the hyperparameter usually have no clear 
meaning and may be incorrectly interpreted. This sole parameter 
of this ICAR rest on the basic graph structure and is confused with 
the mixing parameter if the structured spatial effect is not correctly 
scaled. Also, it is not clear on how to select a prior distribution for 
this precision parameter. For lack of weighting, a fixed hyperprior 
for the precision parameter usually give diverse amount of smooth-
ing if the graph on which given disease counts are observed is al-
tered [29] Also, the commonly used hyperprior distributions in the 
traditional ICAR prior models usually induce overfitting, and will 
not permit to reduce to simpler models such as a constant risk sur-
face or uncorrelated noise over space [30] The spatially structured 
random effect cannot be treated individually from the unstructured 
spatial random effect in the classical or frequentist BYM (Besag, 
York and Mollie) model. This makes the prior explanations for the 
hyperparameters of the two spatial random effects problematic 
and challenging [29]. 

However, the major objective is not only to optimize model 
choice criteria such as DIC values, but to offer a sensible model de-
sign where all parameters have a clear significance and interpreta-
tion. This new model however, parameterizes the BYM model and is 
also an extension of the Besag ICAR model, that leads to better pa-
rameter control as the hyperparameters can be seen independently 
from each other. The main advantage of this novel “Besag2” ICAR 
model is that it permits for an intuitive parameter explanation and 
enables prior assignment. Also, the model is able to shrink towards 
a spatially unstructured risk for different disease prevalence. This 
shows that the Besag2 ICAR model does not overfit the parameter 
estimates. It is therefore acceptable, that the practical advantages 
in terms of interpretability and prior assignment makes the newly 
proposed Besag2 ICAR model in this study beneficial compared to 
existing models, and its usage is also recommended since its model 
criteria performance is better than existing approaches. The Be-
sag2 ICAR model can be joined naturally with covariate data for use, 
or combined into a spatio-temporal setting [29]. 

Though, it will involve additional effort to allocate the vari-
ance not only within the spatial components but overall model pa-
rameters in the linear predictor. It should also be noted that the 
Besag2 ICAR model is not only remarkable within the context of 
disease mapping but also within other applications, such as genet-
ics. Bayesian approaches provide suitable smoothing of the back-
ground rates. Mapping the raw SMRs would present a confusing 
and distorting picture of the risk pattern, whereas in the Bayesian 
models, a good posterior relative risk is obtained in all the areas 
[30] Generally, Conditional Autoregressive models in the Bayesian 

context, are useful for smoothing disease relative risk estimates 
based on neighborhood structures.
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