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Introduction 
Positron Emission Tomography (PET) is a multidisciplinary 

science. In contrast to CT and MRI, which are structural imaging 
techniques, PET is based on the characteristics of positron emitters-
labeled radiopharmaceuticals and has been applied to study 
human pathophysiology in vivo non-invasively. In addition, PET 
has also been applied to monitor the efficacy of therapies, study 
drug pharmacokinetics (PK) and drug pharmacodynamics (PD). 
To design PET radiopharmaceuticals for brain neurotransmitters 
imaging, several factors has to be taken into consideration: 

1) Binding Affinity: 0.01-1nM; 

2) Binding Selectivity and Specificity: the higher the better; 

3) Lipophilicity: Log P=1.5-4; 

4) Specific Activity: the higher the better; 

5) In vivo stability; 

6) Uptake kinetics; and 

7) Toxicity and Radiation Dosimetry. 

Alzheimer’s disease (AD) is one of the most frequent causes of 
death and disability worldwide and has a significant clinical and  

 
socio-economic impact. Although the precise cause of AD remains 
unclear, it is most likely due to multiple etiologies such as neuronal 
apoptosis, inflammatory responses, and alterations in various 
receptors and enzymes. Thus, several PET imaging agents that 
target multiple mechanisms such as various receptors, enzymes 
and β–amyloids have been developed [1,2] for monitoring the 
response of AD drug therapy non-invasively and facilitating AD 
drugs development. [18F]FDDNP (Figure 1b) was one of the first tau 
protein PET imaging radiopharmaceuticals for Alzheimer’s disease 
and chronic traumatic encephalopathy [3]. In order to increase its 
lipophilicity and consequently improve its brain uptake, we have 
synthesized its analog ([18F]FEONM, Figure 1a) and evaluated it as 
a potential tau protein imaging agent.

The [18F]FEONM (Figure 2, 2) was synthesized by nucleophilic 
fluorination of the corresponding tosyl- precursor (Figure 2, 1) 
in acetonitrile with K[18F]/K2.2.2 at 95 ℃ for 15min followed by 
purification with a semi-preparative HPLC (Fortis® Part No. 
FPH 100905, 5μm diphenyl, size: 250x10mm) and solid phase 
extraction gave product in 20-30% non-decay corrected yield 
(EOS) in a synthesis and purification time of 40min from EOB. 
The radiochemical purity of [18F]FEONM was determined using an 
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analytical HPLC (Cogent C18 100A 5μm, e Series,150mmx4.6mm, 
Cat.No.78018-15P). The keystep of producing F-18 labeled PET 
radiopharmaceuticals online is radiofluorination. One of the 
best reactors for radiofluorination is made of carboxy glass [4]. 
In carboxy glass reactor, the reaction rate of [18F]FEONM will be 
a first order reaction in the beginning, with n order reaction at 
time ta to achieve highest yield and end at time tb, then gradually 
decompose with -m order reaction and end at time tc. Therefore, 

for the function of gap area (FG) [5] curve can be approached with 
Gauss distribution, Gauss or Welch apodization function. Since the 
solution of the integration form of Gaussian apodization function is 
error function, cannot be found an analytical form at its minimum 
area by calculus. However, the length of microfluidic plug flow 
reactor can be designed based on Welch apodization function with 
an analytical form as:

a. [18F]FEONM and
b.  [18F]FDDNP

Figure 1: Structure modification of [18F]FDDNP will increase the lipophilicity and the new structure named [18F]FEONM. 
Therefore, the no Beta amyloid [18F]FDDNP has become an both Tau tangle and Beta amyloid uptake Alzheimer disease 
imaging agent [18F]FEONM.

Figure 2: Synthesis of [18F]FEONM (2).

           

Where D: diameter, FA0: feed rate, CA0: [18F-] initial activity 
concentration, εA: stoichiometry, xA: conversion rate. In vitro studies 

showed that [18F]FEONM had higher lipophilicity than that of 
[18F]FDDNP (log = 2.20 ± 0.17 and 1.93 ± 0.10, respectively [5-7]) 
and the logP ratio of [18F]FEONM to [18F]FDDNP is 1.14. Thus, the 
lipophilicity of [18F]FDDNP increases as expected and it gets 38% 
higher. This is measured with shake-flask gold standard method 
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which is lower than the HPLC measuring result [4,5]. The measured 
lipophilicity difference between these two methods is about one 
hundred times, which is very similar to Harmine, FE@SUPPY, DASB, 
WAY100635 and SNAP-7941 [8] also like the trending of Harmol 
and FET [8].

Micro PET imaging in Streptozotocin induced Tau tangle 
mouse model [9] showed that the brain hippocampus uptake of 
[18F]FEONM in Tau tangle brain hippocampus to cerebellum [18F]
FEONM on a Tau tangle P301S/PS19 transgenic mouse model is 
2.29 [5] while it is 1.78 and 1.51 in Beta amyloid Tg2576 transgenic 
mouse model and in a triple transgenic 3xTg mouse model which 
has both Tau tangle and Beta amyloid [10]. From the transgenic 
mouse model imaging study, we found that [18F]FEONM had uptake 
on both Tau tangle and Beta amyloid transgenic mouse which is 
different from that of [18F]FDDNP that showed no Beta amyloid 
transgenic mice uptake in brain hippocampus [11].
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