

Mini Review Open Access @

Growth of Phytoplankton

Udriste C* and Tevy I

Department of Mathematics-Informatics, Faculty of Applied Sciences, Romania

Received:

December 21, 2018; Published:

January 16, 2019

*Corresponding author: Udriste C, Department of Mathematics-Informatics, Faculty of Applied Sciences, Splaiul Independentei 313, Bucharest, 060042, Centenary of Romanian Great Union 1818-2018, Romania

Abstract

A central problem in biological dynamical systems is to determine the boundaries of evolution. Although this is a general problem, we prefer to give solutions for growth of the phytoplankton. AMS Mathematical Classiftcation: 92D40, 35B36, 35Q92, 37N25.

Keywords: Phytoplankton Dynamical System; Phytoplankton Sub-strate; Phytoplankton Biomass; Intracellular Nutrient Per Biomasss

Introduction

Phytoplankton Dynamical System

In the paper of Bernard - Gouze [1] one analyse a model of phytoplankton growth based on the dynamical system

$$x^{1}(t) = 1 - x^{1}(t) - \frac{1}{4}x^{1}(t)x^{2}(t),$$

$$x^{2}(t) = 2x^{2}(t)x^{3}(t) - x^{2}(t),$$

$$x^{3}(t) = \frac{1}{4}x^{1}(t) - 2x^{3^{2}}(t),$$

where x^1 means the substrate, x^2 is the phytoplankton biomass and x^3 is the intracellular nutrient per biomass, with the physical domain $R^3+:x=(x^1,x^2,x^3)\geq 0$. The previous $\mathrm{dyn}\Sigma\mathrm{anical}$ system is non cooperative and has the equilibrium point $1,0,\frac{\sum \sqrt{1}}{2}$. We introduce the phytoplankton vector field $X=(X^1,X^2,X^3)$ of components $X^1=1-x^1-\frac{1}{4}x^1x^2, X^2=2x^2x^3-x^2, X^3=1x_4^1-2x^{3^2}1$ and the maximal field line $x=x(t,x0), t\in I$, which satisfies the initial condition x(t0,x0)=x0. In order to find bounds for substrate, biomass, and intracellular nutrient per biomass, we use the techniques of optimization developed in our papers [2-6].

Bounds for Phytoplankton Substrate

We use the following problem: ftnd max f $(x_1, x_2, x_3) = x1$ with the restriction $x = x(t, x_0)$. We set the critical point condition $(\nabla f, X) = 0$. In this case $\nabla f = (1,0,0)$. It follows the relation $1 - x^1 - \frac{1}{4}x^1x^2 = 0$. The convenient solution (critical point) $x^- = (x^{-1}, x^{-2}, x^{-3})$ must be

$$x^{-} = x^{-1} \in [0,1), x^{-2} = \frac{4(1-x^{-1})}{x}, x^{-1} \ge 0\Sigma.$$

The sufficient condition Hess $f(X,X)(x^-) + (\nabla f, D_X X)(x^-) < 0$ reduces to $(\nabla f, D_X X)(x^-) < 0$ or $1 + \frac{x^{2\Sigma^-}}{4} 1 - x^1 - \frac{1}{4} \frac{1}{x} \frac{1}{x^2} + \frac{x^1}{4} (2x^2 x^3 - x^2) > 0$. Since at the critical point we have $x^2 = \frac{4(1-x^{-1})}{x^{-1}}$, the condition

Since at the critical point we have $\overline{x}^2 = \frac{4(1_-x^{-1})}{x^{-1}}$, the condition goes to $(1_-x^{-1})(2x^{-3}_-1) > 0$, and the convenient condition is $\overline{x}^1 < 1, 2\overline{x}^3 > 1$. Theorem 2.1. Suppose that on a evolution line (field line) it exists a point x^- at which we have

$$\overline{x}^{-1} < 1, 2\overline{x}^{-3} > 1, \overline{x}^{-2} = \frac{4(1 - \overline{x}^{-1})}{\overline{x}^{-1}}$$

Then the phytoplankton substrate has an upper bound at this point.

Bounds for Phytoplankton Biomass

Let us use the problem: find max $g(x^1, x^2, x^3) = x^2$ subject to $x = x(t, x_0)$.

Theorem: Suppose that on a evolution line (field line) it exists a point at which we have

$$x^{-1} < 2, x^{-2} > 0, x^{-3} = \frac{1}{2},$$

then the $x^2(t)$ component of the corresponding field line has an upper bound at this point.

In the direct alternative, we build the composite function g(x(t, x0)). The condition

$$\frac{d}{dt}g(x(t,x_0)) = \frac{\partial g}{\partial x}(x(t,x_0))\frac{dx^i}{dt}(t) = 0$$

 $\frac{d}{dt}g(x(t,x_0))=\frac{\partial.g}{\partial x}(x(t,x_0))\frac{dx^i}{dt}(t)=0$ reduces to $\frac{dx^2}{dt}(t)=0, i.e., 2x^2x^3-x^2=0 \text{ . the convenient solution is } x^3=\frac{1}{2}.$ The condition

$$\frac{d^2}{dt^2}g(x(t,x_0)) = \frac{\partial^2 \cdot g}{\partial x^i \partial x^j}(x(t,x_0))\frac{dx^i}{dt}(t) + \frac{dx^j}{dt}(t) + \frac{\partial^2 \cdot g}{\partial x^i}(x(t,x_0))\frac{d_2x^j}{dt^2}(t) < 0,$$

becomes $2x^2(t)\frac{dx^3}{dt}(t) < 0, i.e., x^2 > 0, \frac{1}{4}x^1 - 2x^{32} < 0$. Replacing $x^3 = \frac{1}{2}$, we find $x^2 > 0, x^1 - 2 < 0$. The same result is obtained as in the previous method.

Bounds for Intracellular Nutrient Per Biomass

Now the helping problem is: compute max $h(x^1, x^2, x^3) = x^3$ with the restriction $x = x(t, x_0)$.

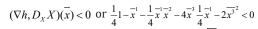
The critical point condition is $(\nabla h, X) = 0$. Since $\Delta h =$ $\begin{array}{l} \nabla h = \ (0,0,1), \ \ \text{it follows the relation} \ \frac{1}{x} x^1 - 2 x^{32} = 0. \ \text{The critical point} \\ \overline{x} = (x^{-1}, x^{-2}, x^{-3}) \ \ \text{must be} \ \ \overline{x} = x^{-1} \ge 0, x^2 \ge 0, x^3 = \sqrt{x^1} \ \underline{\Sigma}. \ \ \text{The sufficient} \\ \text{condition Hess} \ \ h(X,X)(x) + (\nabla h, D_X X)(x) < 0 \ \ \text{reduces to} \\ \end{array}$

ISSN: 2574-1241

DOI: 10.26717/BJSTR.2019.13.002360 Udriste C. Biomed J Sci & Tech Res

This work is licensed under Creative Commons Attribution 4.0 License

Submission Link: https://biomedres.us/submit-manuscript.php



Since at the critical point we have $\frac{1}{x^3} = \frac{\sqrt{x^1}}{2\sqrt{2}}$ the condition goes to $1 - \frac{1}{x^1} - \frac{1}{4} \frac{1}{x^2} < 0$, *i.e.*, $1 < \frac{1}{x}(1 + \frac{1}{4} \frac{1}{x^2})$

Theorem: Suppose that on a evolution line (field line) it exists

 $\frac{-}{x}$ at which we have $1 < x^{-1}(1 + \frac{1}{4}x^{-2}), x^{-3} = \frac{\sqrt{x^{-1}}}{2\sqrt{2}}$. Then the intracellular nutrient per biomass has an upper bound at this point.

References

- 1. Bernard O, Gouze JL (2002) Global qualitative description of a class of nonlinear dynamical systems. Artificial Intelligence 136(1): 29-59.
- 2. Calin O, Udriste C (2014) Geometric Modeling in Probability and Statistics, Springer.
- Udriste C (1994) Convex Functions and Optimization Methods on Rieman-nian Manifolds, Mathematics and Its Aplications 297, Kluwer Aca- demic Publishers.
- 4. Udriste C (2000) Geometric Dynamics, Mathematics and Its Aplications 513, Kluwer Academic Publishers 24(2): 313-322.
- 5. Udriste C, Dogaru O (1991) Extrema conditioned by orbits, in Romanian. Sci Bul. IPB 51: 3-9.
- 6. Udriste C, Dogaru O, Tevy I (2002) Extrema with Nonholonomic Constraints, Geometry Balkan Press.

BIOMEDICAL

Assets of Publishing with us

- Global archiving of articles
- Immediate, unrestricted online access
- Rigorous Peer Review Process
- **Authors Retain Copyrights**
- Unique DOI for all articles

https://biomedres.us/