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Introduction

The most important predictor of clinical outcome in the anterior 
cruciate ligament (ACL) reconstruction is tunnel placement [1]. 
Roof impingement occurs when an ACL graft prematurely contacts 
the intercondylar roof before the knee reaches terminal extension 
(Figure 1). Impingement syndrome occurs where the relationships 
between two articular components are incongruous, with resulting 
friction, inflammation, and degeneration [2]. To consistently choose 
the ideal tibial tunnel location, the surgeon needs to be familiar with 
the unique anatomy of the ACL footprint and associated landmarks. 
The ideal graft is positioned in the intercondylar notch so that it 
approximates the angle of the intercondylar roof during extension. 
Using the detailed guidelines for tunnel placement and length, the 
tibial tunnel should be parallel and posterior to the intercondylar 
roof with a knee in full extension [3] (Figure 1). If one looks at a 
radiograph with the full knee extension, the tibial tunnel needs to 
open into the joint in a position that is behind of the junction of two  

 
imaginary lines−one corresponding to the tibial plateau and the 
other roof of the intercondylar notch (Blumensaat’s line). 

Two prominent surgeons in particular- Freddie Fu and 
Charlie Brown, have been working on the idea of anatomical 
ACL reconstruction, doing a lot of works on “Where’s the right 
place to put the ACL?”, In particular, in the cadavers, on CT, on 
MRI and so on, restoring anatomy may be the key to success [4]. 
The anatomical arrangement of the ACL causes tensioning of the 
fibers in the anteromedial (AM) bundle and loosening of the fibers 
in the posterolateral (PL) bundle, which is seen as a reciprocal 
tension pattern. So, this group of prominent surgeons, including 
several leading Japanese surgeons [5], looked more carefully at 
the anatomy and doing a different kind of ACL reconstruction and 
came up with this concept of ‘double-bundle’ ACL reconstruction, 
as opposed to a single bundle ACL reconstruction [6]. That is a very 
anatomical way of doing the surgery as it is re-creating the anatomy 
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by replacing the two ruptured bundles of the original ligament with 
two new bundles [4]. However, which, if any, of these recommended 
placements, results in the goal of obtaining an isometric graft 
remains uncertain [7,8].

It is not often realized, even by anatomists, that it is the function 
of a joint not merely to permit mobility of the articulated bones, but 
also to register the relative position and movement of the bones [9]. 
The organs of the knee fall into the perceptual system. Ligaments 
and cartilage contact contribute to the mechanical constraints in 
the knee joints [10, 11]. Next to its mechanical function, the ACL 
has an important somatosensory feedback loop [12] by providing 
proprioceptive information regarding kinematics of the knee 
joint [13-20]. Furthermore, a reduction in knee proprioception 
plays an essential factor for osteoarthritis propagation [21]. We 
should choose surgical procedures that reconstruct not only the 
anatomy but also the neurophysiology feed-back mechanism 
[22-25]. Recently, there were attempts to characterize “articular 
kinesthesis” of the knee joint by measuring the instantaneous axes 
of the knee (IAK), yielding information about the joint position as 
well as joint rotation [26, 27]. The IAK [28,29] is proposed to play 
an integral role in understanding equilibrium function in postural 
maintenance, occurring in response to gravity and ground reaction 
and in postural stabilization, occurring in response to a perturbation 
[30]. The hypothesis being entertained is that the IAK is the result 
of perceptual action for it adjusts perceptual information obtained 
from its environment, as contrasted with the merely passively 
driven knee axis. 

The IAK is an indeed obtained stimulus, rather than an imposed 
one, which is prevented by the term axis. We suppose that the knee 
to be one degree-of-freedom [31] in equilibrium [32] under the 

influence of pure force along ligaments, and articular contacts, 
induced by the action of muscle forces, then the necessary and 
sufficient condition is, that the forces which act upon the ACL graft 
shall constitute involution with the original system. The objective 
of this study is to show how the knee tensegrity system manages 
the balance between tension and compression during locomotion 
and demonstrate the method to determine ideal placement of the 
tibial tunnel with respect to the IAK. Such placement in vivo has the 
potential to produce an isokinetic graft without risk of impingement 
reliably.

Results and Discussion
The tensegrity’s structure is characterized by the contact normal 

elements $’4 and $’5, while all the other elements are, continuous 
tension elements, showing specific configuration having torqueless 
connections (Figure 1) [33]. There are no moments at the joints 
because the knee tensegrity structures are entirely in involution 
[34,35] and, therefore, there are no bending moments in these 
structures, just tension and compression, and omnidirectional load 
distributors. Phillips [36] refers to each of the contact normal and 
tensional loads at the IAK as spokes of the linear complex [37-40] 
because these lines of force resemble spokes of the bicycle wheel. 
Three lines were projected respectively to the sagittal plane so that 
the line of graft could be aligned to any transversal intersecting 
this pair of directrices: the central line of knee complex that is the 
instantaneous axis of the knee, directrix 1 and directrix 2 (Figure 
2). The lines were generated at the stance phase of 50%. Notice that 
if the graft line may be not precisely aligned with the member line 
within the knee complex, due to position errors, for example, the 
velocity difference on the graft line would not be zero, but still be 
small. 

Figure 1: Reconstructed system shows that graft impingement occurs when the graft becomes trapped in the notch between 
the rounded ends of the femur-intercondylar notch or Blumenbsaat’s line (anterior-posterior and medial view).  This can cause 
graft abrasion on the walls and edges of the notch, with wear and tear and eventual graft failure. A tibial tunnel that is anterior 
to the tibial intersection of the slope of the intercondylar roof allows that distal half of the roof to impinge on the anterior 
surface of the graft (arrow) (Howell 1998, Howell and Deutsch 1999). Severe roof impingement occurs when the surgeon places 
the tibial tunnel entirely anterior to the slope of the intercondylar roof (right top). Moderate roof impingement occurs when the 
surgeon places the tibial tunnel partially anterior to the slope of the intercondylar roof (right middle) A graft is unimpinged 
when the surgeon places the tibial tunnel entirely posterior and parallel to the slope of the intercondylar roof (right bottom). 
An unimpinged graft has a row, uniform signal intensity on MRI.

http://dx.doi.org/10.26717/BJSTR.2018.10.001915
http://dx.doi.org/10.26717/BJSTR.2018.10.001919


Biomedical Journal of Scientific & Technical Research Volume 10- Issue 2: 2018

Cite this article: Wangdo Kim. A Tensegrity Model of a Knee for the ACL Reconstruction. Biomed J Sci&Tech Res 10(2)-2018. BJSTR. 
MS.ID.001919. DOI: 10.26717/ BJSTR.2018.10.001919. 7674

Figure 2: ACL alignment tuned to the two directrices. We could conjure a novel surgical technique for customizing the 
placement of the tibial tunnel, obtaining the two directrices, then aligning the line of the graft to be intersecting this pair.

If the line of an ACL graft is so selected that it cuts both 
directrices of the knee complex, then the line becomes a member 
of the knee complex, which ensures the isokinetic graft placement 
related to trans-tibial-femoral tunneling. Consider now the 
necessary kinematic relations in that contact point c is the common 
point belonging to both tibial and femoral tunnel (Figure 2). The 
velocity of the point c residing on the femoral tunnel (VF) can be 
resolved into two components: One component is perpendicular to 
the graft line, and another component parallel to it; similarly, the 
velocity of the point on the tibial tunnel coincident with the point c 
(VT) can also be resolved into two components. For the two bodies to 
remain in conjugate motion the parallel component of the graft line 
of its velocity must be equal, by projecting VF and VT  onto the graft 
line (Figure 1); otherwise, it would result in impingements. The 
difference in the perpendicular component is the relative sliding 
velocity between the articulating tunnel seems closely related to 
an essential factor in choosing the proper size in a tunnel width. 
Widening of the tunnel diameter might be performed, allowing 
more tolerances for this sliding, taking account of the width of the 
graft and existing diameter of the notchIf we recall that a force 
acting on a reciprocal screw does not change the rate of work being 
done on a knee constrained by a knee joint axis (IAK), then, if time is 
treated as an independent variable, the reciprocal condition states 
that if a knee has an infinitesimal displacement, the work done by a 
force acting on the reciprocal screw to the knee is zero.

If a foot is held still at the stance phase, braking forces (or 
torques) on knee joint are required to balance a ground reaction 
force acting on the foot. From the principle of virtual work, we know 
that the reaction torques (or forces) on the joints are zero if the 
force is along the reciprocal screw. Therefore, if the IAK is used for 
drilling for customizing the placement of the tibial tunnel, one can 
align the drill with the axis of the reciprocal screw and eliminate 
the reaction (braking) torques about knee joints. The reaction 
forces (and torques) of the foot will then be taken by the base of 

the foot instead (i.e., the entire leg system) (Figure 2). Therefore, it 
was stated that we should choose surgical procedures that not only 
reconstruct anatomy but also restore functioning in the original 
knee complex system, where the line of force in ACL graft must 
be incapable of causing a change in the IAK. In other words, knee 
complex in involution is the necessary and the sufficient conditions 
to avoid the roof impingement.
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