Synthesis and Biological Evaluation of 1-(5-((9H-Carbazol-9-yl) Methyl)-2-Methyl-1,3,4-Oxadiazol-3(2H)-yl)Ethanone

S Muralikrishna*

Biological E.Ltd Company, shameerpet, India

Received: April 28, 2018; Published: May 08, 2018

*Corresponding author: S Muralikrishna, Biological E.Ltd company, shameerpet, Hyderabad, India

Abstract

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1-{5-[(9H-carbazol-9-yl)methyl]}-2-methyl-1,3,4-oxadiazol-3(2H)-yl)ethanone ring were synthesized by the condensation of 2-(9H-carbazol-9-yl)acetohydrazide with 2-(9H-carbazol-9-yl)-N-ethylideneacetohydrazide and acetic anhydride. To this reaction was subjected. It forms 2-{1-((4-acetyl-5-methyl-5-(trifluoromethyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl)methyl)-1H-indol-3-yl)-3-(p-tolyl)thiazolidin-4-one. The structure of these newly synthesized compounds were characterised by 1H NMR, 13CNMR, Mass IR, and elemental analysis.

Keywords: 1, 3, 4oxadiazole; Acetic Anhydride; Carboxazole

Introduction

Hetero cyclic compounds represents an important class of biological molecules. The hetero cyclic molecules which, posses indole, 1,3,4oxadiazole moieties exhibit wide range of biological activities. Carbazoles are one of the most important alkaloids molecules found extensively in biological systems, which play vital role in many of the biochemical process. Carbazoles ring constitutes an important basic skelton and development of the drug. The classical indole drugs are indomethacin and indoxole. Indole derivetives found to posses high which includes, antibacterial, analgesic, anti pyretic, anti fungal, anti inflammatory, antihelminic, cardiovascular, anticonvulsant and selective COX-2 inhibitory activities. 1,3,4-oxadizoles has become an important synthon for the development new therapeutic agents. Compounds with 1,3,4-oxadiazole core substantiate for broad spectrum of biological activities including antimicrobial [1], antifungal [2], anti-inflammatory [3], anticonvulsant [4], antioxidant, analgesic [5] and mutagenic activity [6]. Compounds containing quinoline moiety are most widely used as antimalarials [7], antibacterials [8], antifungals [9], anticancer agents [10] and potential HIV-1 integrase inhibitors [11-12].

Synthesis of 2-(9H-Carbazol-9-yl)-N’-Ethylideneacetohydrazide(3)

To the solution of 2(a) (0.01mole) in hot methanol (25ml), aceto phenone(0.01) and a drop of glacialacetic acid were added. The solid that sepeared on refluxing for 3 hours was filtered wash with cold methanol and recrystalised from methanol to give 7(a).M.P 2360C, yield 84%.

IR (KBr) νmax (cm–1):

3418.21 (N–H), 2360.4–2922.59 (Ar–H); 1H NMR

Mini Review Open Access
(CDCl3): δ: 10.2 (s, N–H, 2H), 7.2–8.33 (m, Ar–H, 8H). Mass (m/z, %): M+ 167.8; Anal. calcd. for C, 86.20; H, 5.43; N, 8.38%; Found: C, 86.21; H, 5.42; N, 8.37%.

Synthesis and Biological Evaluation of 1-(5-((9H-Carbazol-9-yl)Methyl)-2-Methyl-1,3,4-Oxadiazol-3(2H)-yl) Ethanone(4)

A mixture of carbazole derivatives and acetic anhydride(5) (0.01 mol) was heated at 100–120 oC in presence of excess is added. After cooling, the mixture was poured into crushed ice, and neutralized with 5% aq.NaHCO3 solution. The precipitated solid was filtered and purified using column chromatography (petroleum ether:ethyl acetate, 9:1).

Yield: 60%: mp 190.7 ◦C. IR (KBr) cm–1: ν 3150 (N-H), 3050-2750 (C-H).

1H-NMR (CDCl3): δ, 7.65 (d, 1H, 1H-indazole H4, J = 7.6), 7.35 (d, 1H, indole H7, J = 8), 6.80-6.85 (m, 3H, indole H2, H5, H6), 7.35-7.45(m, 5H, phenyl group), 3.80 (s, 2H, C-CH2-N), 3.25 (t, 4H, piperazine H3, H5, J = 4.8), 2.70(t, 4H, piperazine H2, H6, J = 4.8),, Anal. Calc. for: C, 78.32; H, 7.26; N, 14.42%, found:C, 78.18; H, 6.94; N, 14.25%.

Anti-Bacterial Activity

The anti-bacterial activity of synthesized compounds was studied by the disc diffusion method against the following pathogenic organisms. The gram-positive bacteria screened were staphylococcus aureus NCCLS 2079. The gram negative bacteria screened were Escherichia coli NCCLS 2065 and pseudomonas aeruginosa NCCLS 2200. The synthesized compounds were used at the concentration of 250 μglml and 500μglml using DMSO as a solvent the Cefaclor 10μglml disc was used as a standard. (Himedia,Laboratories Ltd, Mumbai).The test results presented in the Table 1 and (Figure 1) suggest that 4b,4d,4e exhibit high activity against the tested bacteria, the rest of the compounds were found to be moderate active against the tested microorganisms [13-14].

Table 1

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>4(a)</th>
<th>4(a)</th>
<th>4(a)</th>
<th>4(a)</th>
<th>4(a)</th>
<th>4(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>H</td>
<td>CH3</td>
<td>OCH3</td>
<td>Cl</td>
<td>NO2</td>
<td>CF3</td>
</tr>
</tbody>
</table>

Antifungal activity

The antifungal activity of synthesized compounds were studied by disc diffusion method against the organisms of Penicillium and Trichophont. Compounds were treated at the concentrations of 500μglm and 1000μglml using DMSO as solvent. The standard used was Clotrimazole 50μgm against both organisms.

References
