Introduction

London health sciences center is a frequent user of Lu-177 Dotatate for the treatment of neuroendocrine disease. We began using this radionuclide therapy as an in-patient procedure, where patients were released at 20 hours' post therapy administration with minimal restrictions. Over the course of 2013, we worked to transform this therapy into an outpatient procedure, where patients were released at 4-6 hours' post therapy administration with major restrictions. The previous methods and data we presented in December 17, 2013 were based on dose rates derived from cumulated doses measured over approximately 16 hours, and an assumption of Lu-177 clearance based on radioactive decay only. Since 2013, our hospital has gained more experience with Lu-177 Dotatate, enabling us to develop a better understanding of dosimetry. We describe new dose measurements, a new model we developed to describe our observations, and a revised schedule of patient release and restriction duration. Compared against previous measurements from 2013, our new measurements are of instantaneous (not cumulative) dose rates, and we now consider Lu-177 clearance to proceed both by physical decay and biologic excretion. Our new proposed model combines our experimental results with results from literature. The model will state the dose rate from time of discharge can be modeled as a decaying double exponential function [1-5].

Proposed Model

Clearance

Clearance processes are important to understand because they will allow us to predict dose rate from a radionuclide therapy patient after the patient is released from the hospital. Clearance kinetics for many radiopharmaceuticals can be described as having an early phase and a late phase. Early phase clearance is often dominated by protocol- and patient-specific variables that influence non-specific uptake (for example: patient hydration, renal function). Conversely, late-phase clearance is usually from disease-specific uptake (for example: from a tumor). Many authors in literature model clearance kinetics using first-order approximations (first order rate kinetics), resulting in clearance equations with decaying exponential functions [6-10]. Following these examples, we propose the clearance of our radiotherapy product can be modeled as a summation of two exponential decay functions: [Equation 1]

\[
CLR(t) = \alpha \exp(-\lambda_1 t) + \beta \exp(-\lambda_2 t)
\]

Where \(\lambda_1 \) and \(\lambda_2 \) describe the early phase and late phase effective decay constants, respectively; and \(\alpha \) and \(\beta \) represent the respective proportions of our radiotherapy product governed by the early and late phase clearance processes. Note that the relationship between decay constant and half-life is \(\lambda = \ln(2)/t_{1/2} \) where \(t_{1/2} \) is half-life (Figure 1).

Dosimetry

The total estimated effective dose (EEDTOTAL) received by an individual in close proximity to the patient is proportional
to the area under the patient activity vs time curve, from [time = discharge] to [time = infinity] weighted by patient restrictions. We express this as follows: [Equation 2]

$$EED_{\text{total}} = EED_D(DS \rightarrow RE) + EED_E(RE \rightarrow \infty) + D_i$$

Where D_i = discharge time and R_i = restrictions end time. EED_D is the estimated effective dose received by the caregiver from discharge to end of restrictions, during which restrictions are in effect. We define it as: [Equation 3]

$$EED_D(DS \rightarrow TR) = \int_{DS}^{TR} LRVTQEED DS TR \, dT$$

Where,

- R [unitless] = dose reduction factor due to patient self-shielding (attenuation);
- V [unitless] = dose reduction factor due to patient voiding after therapy administration;
- Γ [uSv m$^{-2}$/MBqhr] = specific gamma constant for Lu-177;
- Q_0 [MBq] = initial amount of Lu-177 administered to patient;
- r [meters] = distance between patient and exposed individual;
- E_R [unitless] = restricted occupancy factor; and t [hours] = time.

EED_U is defined the same as EED_D except the restricted occupancy factor, E_R, is replaced with the unrestricted occupancy factor, E_U, and the limits of integration are [time = RE] to [time = infinity]. Integrating Equation 2 is straightforward, but leads to a lengthy equation that we omit here for brevity [10-15]. The term D_i accounts for dose to the caregiver arising from internalized radionuclide’s from the released patient, after NRC Regulatory guide 8.39. This is expressed as:

$$D_i = e^{-in(2)DS} / t_{1/2}Q_0(10^{-5})DFC$$

Where $t_{1/2}$ is the Lu-177 physical half-life, 10-5 is the assumed fractional intake, and DCF is the dose conversion factor, taken as 0.05 [uSv/MBq]. What remains now is to assign numerical values to the variables. We have conducted an experiment to measure some of these values; whereas others are taken from literature, as will be described next.

Objective 2: Calculation of Voiding (V): We determined the fraction of radiotherapy product in the patient after voiding by comparing pre- and post-void dose-rate measurements. Our predicted dose rate is given by:

$$PRVTQEED dedicated Dose Rate uSV tr = \alpha \lambda + \beta \lambda + \lambda = 2.1 h$$

where λ is the specific half-life of Lu-177 administered to patient; r [meters] = distance between patient and exposed individual; E_R [unitless] = restricted occupancy factor; and t [hours] = time.

We have conducted an experiment to measure some of these values; whereas others are taken from literature, as will be described next.

Table 1: Calculation of Voiding (V) we determined the fraction of radiotherapy product in the patient after voiding by comparing pre- and post-void dose-rate measurements.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Activity [MBq]</th>
<th>1 hr pre-void [uSv/hr]</th>
<th>1 hr post-void [uSv/hr]</th>
<th>5 hrs [uSv/hr]</th>
<th>20 hrs [uSv/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5500</td>
<td>6.3</td>
<td>6.3</td>
<td>2.5</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>3700</td>
<td>n/a</td>
<td>4.3</td>
<td>2.2</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>5500</td>
<td>6.5</td>
<td>n/a</td>
<td>2.7</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>5500</td>
<td>5.2</td>
<td>4.7</td>
<td>1.9</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>3700</td>
<td>5.3</td>
<td>4.8</td>
<td>2.7</td>
<td>1.1</td>
</tr>
<tr>
<td>6</td>
<td>3700</td>
<td>4.8</td>
<td>3.9</td>
<td>1.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Objective 3: Parameters for Clearance Model CLR(t): The following values for CLR (t) parameters (Table 2). For interest, we note that the effective half-life associated with λ_1 is $t_{1/2} = 2.1$ [hours], and λ_2 is $t_{1/2} = 91$ [hours].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1</td>
<td>0.269</td>
</tr>
<tr>
<td>λ_2</td>
<td>0.328</td>
</tr>
<tr>
<td>λ_3</td>
<td>7.63x10$^{-3}$</td>
</tr>
</tbody>
</table>

Checking Model again Measurements: As a check of our results so far, we can plot our predicted dose rate for patients as a function of time; and compare this prediction with our measurements. Our predicted dose rate is given by:

$$PRVTQEED dedicated Dose Rate uSV tr = \alpha \lambda + \beta \lambda + \lambda = 2.1 h$$

This predicted dose rate is compared with experimental measurements in Figure 2. For the case of 3700 MBq administered activities.

Model-Based Predictions of EED

In all cases, restrictions are assumed to result in 0.25 occupancy (Table 3). We have conducted an experiment to measure some of these values; whereas others are taken from literature, as will be described next.

Correlation with December 17 2013 Data

In our 2013 correspondence to you, we described an experiment where we measured cumulative doses from 14 patients.
Dosimeters were placed in various locations in patients’ rooms and measured over different time periods (up to 20 hours’ post therapy administration). During this time, patients moved around the room. From our 2013 data, we have 0.18 uSv as a maximum dose of 5500 MBq, and the maximum was 7400 MBq.

Table 4: Comparison of our 2013 data with our current model. The corresponding calculations using our proposed model.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5500</td>
<td>78 (average of all patients)</td>
<td>101</td>
<td>22%</td>
</tr>
<tr>
<td>9</td>
<td>7400</td>
<td>180 (patient 12)</td>
<td>136</td>
<td>32%</td>
</tr>
<tr>
<td>9</td>
<td>7400</td>
<td>140 (patient 14)</td>
<td>136</td>
<td>3%</td>
</tr>
</tbody>
</table>

The same parameters can be entered into our model: an activity of 5500 or 7400 MBq and a distance of 1 meter. We can use EEDR if we set DS=4 and RE=20, and restriction occupancy fraction to 1 [20-25] (Table 4).

Scenario 8

From our 2013 data, the average dose measurement was 78 uSv (assuming the average activity of 5500 MBq). Our proposed model, assuming 5500 MBq, yields a dose of 101 uSv.

Scenario 9

From our 2013 data, we have 0.18 uSv as a maximum dose (with 7400 MBq administered activity), and 140 uSv as the second highest recorded dose. Our model predicted 136 uSv. Our 2013 data shows variability, and there are differences compared with our proposed model ranging from 3% to 32%. Part of the variability and differences may be due to the patients of 2013 moving around their hospital rooms (their precise movement patterns over 20 hours were not monitored). However, overall we consider the 2013 experiment results and our model predictions reasonably close, especially considering we used two very different methods to arrive at dose. Our intention is to eventually use our new model to guide decisions for Lu-177 Dotatate patient restrictions and release from our institution. We would appreciate your thoughts on our proposal [25-28].

References

Submission Link: http://biomedres.us/submit-manuscript.php

Assets of Publishing with us

- Global archiving of articles
- Immediate, unrestricted online access
- Rigorous Peer Review Process
- Authors Retain Copyrights
- Unique DOI for all articles

This work is licensed under Creative Commons Attribution 4.0 License