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Abstract




A central problem in biological dynamical systems is to determine the boundaries of evolution. Although this is a general problem, we prefer to give solutions for growth of the phytoplankton. AMS Mathematical Classiftcation: 92D40, 35B36, 35Q92, 37N25.



Keywords: Phytoplankton Dynamical System; Phytoplankton Sub-strate; Phytoplankton Biomass; Intracellular Nutrient Per Biomasss 








Introduction



Phytoplankton Dynamical System







In the paper of Bernard - Gouze [1] one analyse a model of phytoplankton growth based on the dynamical system
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where x1 means the substrate, x2 is the phytoplankton biomass and x3 is the intracellular nutrient per biomass, with the physical domain R3 +: x = (x1, x2, x3) ≥ 0. The previous dynSamical system is non cooperative and has the equilibrium point [image: ]
2. We introduce the phytoplankton vector field X = (X1X2,X3) of components [image: ] and the maximal field line x = x(t, x0), t E I, which satisfies the initial condition x(t0, x0) = x0. In order to find bounds for substrate, biomass, and intracellular nutrient per biomass, we use the techniques of optimization developed in our papers [2-6].






Bounds for Phytoplankton Substrate



We use the following problem: ftnd max f (x1, x2, x3) = x1 with the restriction x = x(t, x0). We set the critical point condition (V/,X) = 0. In this case V/ = (1,0,0). It follows the relation 1 - x1 -1 xV = 0. The convenient solution (critical point)
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Then the phytoplankton substrate has an upper bound at this point.



Bounds for Phytoplankton Biomass



Let us use the problem: ftnd max g(x1, x2, x3) = x2 subject to x = x(t, x0).
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Theorem: Suppose that on a evolution line (field line) it exists a point at which we have
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then the x2(t) component of the corresponding field line has an upper bound at this point.



In the direct alternative, we build the composite function g(x(t,x0)). The condition
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Bounds for Intracellular Nutrient Per Biomass



Now the helping problem is: compute max h( x1, x2, x3) = x3 with the restriction x = x(t, xo).
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Theorem: Suppose that on a evolution line (field line) it exists
a point





x at which we have [image: ] Then the intracellular nutrient per biomass has an upper bound at this point.
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