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ABSTRACT

There are fewer than 10 projection views in extreme few-view tomography. The state-of-the-art methods 
to reconstruct images with few-view data are compressed sensing based. Compressed sensing relies on a 
sparsification transformation and total variation (TV) norm minimization. However, for the extreme few-
view tomography, the compressed sensing methods are not powerful enough. This paper seeks additional 
information as extra constraints so that extreme few-view tomography becomes possible. In transmission 
tomography, we roughly know the linear attenuation coefficients of the objects to be imaged. We can use these 
values as extra constraints. Computer simulations show that these extra constraints are helpful and improve 
the reconstruction quality.
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Introduction
XTREME few-view tomography is referred to the situation where 

the number of tomography measurement views is less than 10 [1-
3]. If we model the data acquisition as a system of linear equations, 
the system is extremely under- determined for extreme few-view to-
mography. Constraints are vital in shrinking the solution space [4]. 
Iterative algorithms are better than analytical algorithms when the 
imaging system is under-determined [5-9]. The total-variation (TV) 
norm of the gradient of an image is a good indicator for the piece-
wise-constant feature of the image. TV minimization is a popular 
method for few-view tomography [10-15]. Extreme few-view tomog-
raphy requires more information about the target image in addition 
to the piecewise-constant constraint. In the era of machine learning, 
a large amount of information can be learned from images like the 
image to be reconstructed [16-22]. This paper assumes that similar 
images are not available. We must seek other information. In trans-
mission tomography, we roughly know the values of the attenuation 
coefficients for the materials in the objects being imaged. We use 
these known values as the constraints in this paper, as described in 
the next section. 

Methods
There are many approaches to develop an image reconstruction 

algorithm. One approach is to set up an objective function, which typ-
ically contains a data fidelity term and one or more Bayesian terms. 
Each Bayesian term represents a constraint. An algorithm that mini-
mizes this objective function minimizes all the terms simultaneous-
ly. Another approach is the projections onto convex sets’ (POCS) ap-
proach. In this approach, the main algorithm consists of two or more 
sub-algorithms. These sub-algorithms work separately and sequen-
tially. Each of them has its own goals in mind. For a POCS algorithm, 
it is not easy to study its convergence. However, it is easy to fine tune 
each sub- algorithm independently and to adjust the balance between 
them. The POCS approach is adopted in this paper and is described in 
Figure 1. The POCS algorithm we used in this paper consists of three 
sub-algorithms. The first sub-algorithm takes care of image recon-
struction. Any iterative image reconstruction algorithm can potential-
ly be used to minimize the discrepancy between the forward projec-
tion of the reconstructed image and the line- integral measurements. 
In Figure 1, the image reconstruction algorithm ① is chosen to be the 
well-known maximum- likelihood expectation-maximization (MLEM) 
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algorithm [23]:
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where mp  is the mth  projection, , ,i j ma  is the projection contribu-
tion from the pixel ( ),i j to the projection bin m , and k  is the itera-

tion index. In fact, the user can choose any justifiable iterative image 
reconstruction algorithm for algorithm ①. For example, a transmis-
sion EM algorithm [24] or a least square minimization algorithm [5]. 
The second sub-algorithm is a gradient descent algorithm to mini-
mize the TV norm of the reconstructed image. The gradient descent 
algorithm ② in Figure 1 is given as

Figure 1: A flowchart of the algorithm used in computer simulations.
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∂  is subdifferential of the TV norm of the current

reconstructed image X. We use an extremely small step size η  to 
ensure the stability of the algorithm. At the same time, we repeat this 
step 5000 times to guarantee the TV norm is effective. The TV norm 
can be defined as
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One can combine algorithm ① and algorithm ② into one Bayes-
ian algorithm [11].

The third sub-algorithm is used to enforce the reconstructed im-
age pixels to take the pre-specified values. The sub-algorithm ③ is the 
new attempt in this paper. It simply moves its image pixel value to its 
closest default image values. For torso imaging, the default values can 
be set up as the linear attenuation coefficients of the air, soft tissues, 
and bones. In fact, this sub-algorithm is nothing but segmentation. 
Notice that this step is skipped for most iterations, as enumerated by 
the variable ‘Count.’ We only activate this step every 100 counts, as 
dictated by remainder function ‘mod’ in mod (Count,100) = 0, which 
is the reminder of Count/100. We only know the approximate poten-
tial values in the image. We must downplay these ‘known values’ con-
straint and give the overall POCS algorithm a chance to converge to 
the true values that may not be the same as our ‘set values.’ Therefore, 
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it is important not to terminate the POCS with the sub-algorithm ③. 
The computer simulations in this paper consider a two- dimensional 
(2D) parallel-beam imaging system, with an image array size of 256 × 
256 pixels, the detector size of 256 bins, and 8 views (over 180°). The 
projection line integrals were calculated analytically. The POCS algo-
rithm used 1009 iterations used. Notice that 1009 is not a multiple of 

100. This gives the pixel values in the reconstructed image a chance to 
move away from the segmented values set in the third sub-algorithm. 
Both noiseless data and noisy data were used in the computer simula-
tions. The noise was Gaussian distributed with a mean value of 0 and 
a variance of 5.

Figure 2: The true phantom.

Results
Figure 2 shows the true phantom used in computer simulations. 

The large disk has a value of 0.5. There are 8 small discs. Discs 1-5 
have a value of 1.5; discs 6-8 have a value of 1.0. In our implemen-
tation of the sub-algorithm ③, the potential pixel values were set at 
0.51, 1.01, and 1.51. The corresponding pseudo code to update the 
pixel x (i, j) is as follows.

When ‘Count’ is a multiple of 100, execute.

if (0.25 < x(i, j) ≤ 0.75) then x(i, j) = 0.51;

if (0.75 < x(i, j) ≤ 1.25 ) x(i, j) = 1.01;

if (x(i, j) > 1.25 ) x(i, j) = 1.51.

We do not force any pixel to a hard zero in the sub-algorithm ③, 
because the MLEM algorithm cannot update the pixel value zero. Fig-
ure 3 shows two MLEM reconstructions, one with noiseless data and 
the other one with noisy data, respectively. Here, the sub-algorithms 
② and ③ are disabled in Figures 1 & 2 shows two TV reconstructions, 
one with noiseless data and the other one with noisy data, respec-
tively. Here, the sub- algorithm ③ is disabled in Figures 1 & 2 shows 
two proposed POCS reconstructions, one with noiseless data and the 
other one with noisy data, respectively. All images are displayed in the 
gray-scale window of [0, 1.59]. The structure similarity (SSIM), peak 
signal-to-noise ratio (PSNR), and signal-to-noise ratio (SNR) are com-
pared for the reconstructions. Table 1 compares the results using the 
noiseless data; Table 2 compares the results using the noisy data. It is 
shown that the rough knowledge used in sub- algorithm ③ is helpful 
in obtaining better reconstructions (Figures 4 & 5). 
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Figure 3: MLEM reconstructions: (Upper) using noiseless data; (Lower) using noisy data.

Figure 4: TV reconstructions: (Upper) using noiseless data; (Lower) using noisy data.

Figure 5: Proposed POCS reconstructions: (Upper) using noiseless data; (Lower) using noisy data.
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Table 1: Comparison studies with noiseless data.
Method SSIM PSNR SNR

Ideal case 1.00 ∞ ∞

MLEM w/o noise 0.4354 17.1834 11.2257

TV w/o noise 0.8692 23.1472 17.1895

Proposed POCS w/o noise 0.9472 26.4425 20.4847

Table 2: Comparison studies with noisy data.

Method SSIM PSNR SNR

Ideal case 1.00 ∞ ∞

MLEM w/ noise 0.2545 15.9300 9.9723

TV w/ noise 0.5058 12.7521 6.7943

Proposed POCS w/ noise 0.8594 22.7771 16.8194

Discussion and Conclusion
One may ask; “What is the objective function of the sub- algorithm 

③?” We do not need one. If one insists on having one, we can set some-
thing up as However, we do not suggest a gradient based algorithm 
to minimize (4). In our proposed POCS algorithm, we do not simply 
alternate between the sub-algorithms sequentially. Within each POCS 
iteration, we execute sub-algorithm ① once, sub-algorithm ② 5000 
times, and sub-algorithm ③ 1/100 times. We run sub-algorithm ② 
5000 times because we choose to use a very small step size in a gra-
dient descent algorithm to minimize the TV norm. A larger step size 
produces worse images. A very small step size has almost no effect 
on the reconstructed image. To overcome this difficulty, we use a very 
small step size and a large iteration number for the sub- algorithm ②. 
As the sub-algorithm ③, the number of iterations is 1/100. In other 
words, this sub-algorithm is skipped 99 times for every 100 global 
POSC iterations. This is equivalent to re-setting the initial image every 
100 global POCS iterations. One may argue that it is wrong to use the 
emission MLEM algorithm when the noise is Gaussian. The emission 
MLEM algorithm was originally derived for the Poisson noise. It is 
more proper to use a transmission EM algorithm or a least square 
error minimization algorithm for the sub-algorithm ①. Our attempt 
of using an emission MLEM algorithm is to demonstrate that the TV 
minimization makes the noise model less important. The Bayesian 
information dominates the noise model in the maximum likelihood. 
When the measurements are incomplete, any prior information and 
corresponding constraints will help. The piecewise feature of the ob-
jects makes the TV norm minimization effective. The rough knowl-
edge of the image values, as demonstrated in this paper, is also effec-
tive. We believe that there are other features of the images that can be 
used to supplementing the incomplete data. Machine learning turns 
out to be an effective way to explore the common features for a group 
of similar images.
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