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ABSTRACT

Time and accuracy are two key elements that have a significant impact on an algorithm brilliance in 
many engineering applications. Consequently, many algorithms aim to improve precision and cut down 
computational costs when resolving contemporary real-life problems. Optimization based on surrogates is 
considered as an efficient way to keep pace with ever growing problems encountered in modern systems. 
The design of prosthetic de- vices for people with disabilities involve challenging optimization problems. 
In such design problems, the relation between the design parameters and the overall performance of the 
device is complex. Thus, surrogate-based optimization plays an essential role in solving them. This paper 
reviews the key issues of surrogate-based global optimization starting with the fundamental models used 
as surrogates, then contemporary research on sampling approaches, and infill criteria with an eye on 
biomedical applications. Finally, challenges facing surrogate based optimization are discussed.
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Introduction
Many of today’s design problems involve multiple objectives and 

computationally expensive analysis and simulations to evaluate a 
given design. For instance, the design of a prosthetic device requires 
complex simulations to determine the optimal parameters of the de-
vice needed to reach target functionality to aid a disabled person. De-
sign problems need to be formulated mathematically as optimization 
problems in order to find adequate techniques for solving them. An 
optimization problem formulation involves deciding on control vari-
ables and a criterion or more for evaluating a design. The evaluation 
criterion is referred to as the problem objective function. Optimi-

zation algorithms can be divided into two categories: deterministic 
(for instance, gradient descent method) and stochastic or sometimes 
called metaheuristics. For instance, genetic algorithms (GA) [1], the 
simulated annealing (SA) algorithm [2] and particle swarm optimi-
zation (PSO) algorithm [3] are pioneering metaheuristic algorithms. 
The recent ones include the cuckoo search algorithm [4], the bee col-
ony optimization algorithm [5,6], the firefly algorithm [7], the grey 
wolf algorithm [8], and the whale optimization algorithm [9,10]). 
These algorithms are derivative-free and may perform better than 
the conventional derivative-free optimization methods like the co-
ordinate search method. The search for the global optimal solution 
usually requires thousands of objective function evaluations. In many 

https://biomedres.us/
http://dx.doi.org/10.26717/BJSTR.2023.53.008409


Copyright@ : Amany Haridy | Biomed J Sci & Tech Res | BJSTR.MS.ID.008409.

Volume 53- Issue 3 DOI: 10.26717/BJSTR.2023.53.008409

44787

engineering applications, the objective function is a black-box func-
tion, which is evaluated using complicated time-consuming computer 
simulations. This renders determinitic gradient-based optimization 
techniques inadequate for use. Moreover, the huge number of objec-
tive function evaluations required by meta- heuristics encouraged re-
searchers to use surrogate models to replace the expensive black-box 
objective function by another cheap model.

Surrogate-based global optimization (SBGO) is regarded as a 
good method with a number of advantages over the conventional 
optimization approaches. The following are some of SBGO’s distinc-
tive merits. First, it needs fewer computaional resources and less 
time owing to the ap- proximation process. Second, it provides fast 
approximations of the objective function at new design points mak-
ing postoptimality studies and sensitivity analysis feasible. Third, the 
information obtained from the available samples through interacting 
with the system can help the designer gain insight into the system un-
der study. The three basic stages for SBGO are: design of experiments 
(DOE), approaches for surrogate modeling and infill criteria. The first 
stage in the SBGO is referred to as the design of experiments (DOE) 
stage, which defines the samples plan in the design space. The orig-
inal black-box function is evaluated at these sample points. Nobody 
can argue that the selection of the sample candidate points has a sub-
stantial impact on the surrogate model accuracy. Clearly, if the sample 
candidate points are well-chosen, then this can help reduce the huge 
computational cost as discussed in [11,12]. There are two types of 
experiments that can be used in this stage: i) design of physical ex-
periments, and ii) com- puter experiments. In physical experiments, 
the samples plan construction strategies include factorial designs as 
in [13] and [14] and central composite designs such as [15]. As for 
computer experiments, the samples plan designs include uniform de-
signs [16] and latin hypercube designs [17,18]. Simpson, et al. [19] 
confirmed that the conventional physical experiments designs are in-
efficient or even improper for computer experiments.

On the other side, when the best sample candidate points are de-
termined, we attempt to create the surrogate model (or response sur-
face). The purpose of the surrogate model is to create an approxima-
tion of the original objective function over a particular design space. 
The most important step is deciding on the best surrogate model. The 
mathematical characteristics and nature of the surrogate model that 
is chosen actually depends on the mathematical properties of the 
problem objective function. Unfortunately, in real-life applications, 
these mathematical properties are unknown in advance when we try 
to solve the problem.

How the performance of the surrogate model can be enhanced 
is the next issue that needs to be resolved. The answer is based on 
methods for selecting new promising sample points referred to as 
infill criteria. Combining exploitation and exploration help define 
infill criteria. On one side, the exploitation strategy concentrates the 
search on the area in the close vicinity of the best point discovered so 
far. This current optimum location, where the search is concentrat-

ed around, might not be the global or local minimum, or even not a 
stationary point of the original objective function. Therefore, this will 
likely result in falling into a local optimum. On the other hand, the ex-
ploration strategy always investigates unexplored regions within the 
design space. Various infill criteria have been developed for choosing 
the new sample points in recent years. The basic stages of the SBGO 
must be repeated until some specific criteria are achieved such as: 
a specific maximum number of iterations or function evaluations, a 
specific amount of CPU time, or the relative error of the required func-
tion drops to be less than or equal to a specific value.

Surrogate Models
There is a variety of types of surrogate models which can be clas-

sified into interpolating surrogate models; such as Radial Basis Func-
tion (RBF) [20-22] and Kriging (K) (see [23])) and non-interpolating 
surrogate models; such as Polynomial Regression Models (PRM) [24], 
and Multivariate Adaptive Regression Splines (MARS) [25]. Several 
research articles, such as [25-29], developed comprehensive studies 
to investigate the effectiveness and the accuracy of various surrogate 
models. However, we cannot find an agreement on the dominance of 
one specific model over other models. In the past few years, numer-
ous novel surrogate models have been proposed; for instance, in [20], 
a new approach for setting up radial basis function artificial neural 
network is proposed by letting the bias be defined a priori using a cor-
responding regression model. The authors have shown that the RBF 
with a priori bias works perfect for optimizing surrogate-based de-
signs, because it gathers both coarse and dense features of the under-
lying original model simultaneously. Surrogates can be constructed 
by using simplified physics, or by relaxing internal tolerances within 
the black-box simulation. These surrogates are often provided by the 
designer of the simulation. We refer to these as static surrogates. 

Surrogates can also be built and updated as the optimization 
progresses. Interpolation or regression methods can be applied to 
mimic the output of the simulation using quadratic [30,31] or poly-
nomial [32] approximations, DACE Kriging [33-35], treed Gaussian 
processes [36], LOWESS models [37], radial basis functions [38-41] 
or even ensembles of surrogates [42]. We refer to these as dynamic 
models. The surrogate management framework in [11] details how 
to exploit a surrogate model to reduce the overall computational op-
timization time. Research on surrogate-assisted direct search opti-
mization usually involves the use of either static or dynamic models. 
In [43] proposed a way to combine a static surrogate as input for a 
quadratic model of an optimization problem, to be used within the 
poll step of the Mesh Adap- tive Direct Search (MADS) algorithm [44]. 
Some authors have studied a combination of both static and dynamic 
surrogate models. For example, the authors in [45] propose additive 
and multiplicative ways of combining static surrogates with dynamic 
ones. The objective of their research was to propose a hybrid strategy 
to build a quadratic model whose input is not only the optimization 
variables, but also a supplementary variable taking the value of the 
static surrogate model into account. This yields flexible models that 
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inherit the global properties of the static surrogate model and the lo-
cal precision of quadratic models. A novel radial basis function sur-
rogate model assisted evolutionary algorithm for high- dimensional 
expensive optimization problems (RSAEH) was proposed in [46].

Specifically, the proposed algorithm consists of a local search part 
and a surrogate-guided pre-screening part. In the local search part, 
a local surrogate is built using radial basis functions with the most 
promis- ing training sample points, and the optima (or near-optima) 
are located by the optimizer to carry out exact function evaluation at 
these points. In the surrogate-guided pre-screening part, the current 
best sample point is refined using sequential quadratic programming, 
thus guiding the mutation direction by using differential evolution 
operator with the original objective function being evaluated at prom-
ising offspring.

Reliability-based design optimization (RBDO) [47] has been used 
for optimizing engineering systems with uncertainties in design 
variables and system parameters. However, moment-based RBDO is 
inefficient for problems with many random variables and sensitivi-
ty is not defined properly at certain design points. To make the mo-
ment-based RBDO more efficient and prac- tical, a Kriging metamodel 
or surrogate model with an active constraint strategy was proposed to 
resolve this issue. The use of constraints based on surrogates compli-
cates the optimization problem as the uncertainty within the design 
space influences both the objective and constraint functions. While 
some optimization methods consider the mean prediction for the 
constraints, several methods have been reported on ways to include 
the uncertainty into the constraints. One way is to use a probability of 
feasibility to account for the mean prediction and its uncertainty. This 
approach is explored in [48] to evaluate its feasibility and compared 
to other alternative methods documented in the literature.

Sampling Techniques
The sampling criterion determines which points to add to the 

sample plan generated using a specific design of experiments meth-
odology. The choice is based on either the built model or the given 
sample points. The infill criterion or sampling criterion is an essential 
component of the surrogate-based global optimization (SBGO) pro-
cedure. In SBGO, similar to metaheuristic algorithms, this criterion is 
used to perform sequential addition of sample points, gradually lead-
ing to the global optimum. The sampling criteria can be divided into 
two categories: a single-phase criterion and a multi- phase criterion. 
The distinction between a single-phase and multi-phase sampling 
criterion is based on whether the exploitation and exploration crite-
ria are united or separate. For one- phase criterion, the exploitation 
and exploration goals are achieved together from a single sub- opti-
mization problem. In contrast, the multi-phase criterion completely 
separates the phases of exploitation and exploration. The expected 
improvement (EI) criterion is a classic example of a single-phase cri-
terion. The EI standard measure determines the predicted value of the 
improvement numerically. The ex- pected improvement introduced 

in [49,50] and its modified versions including weighted expected 
improvement [51], augmented expected improvement [52], and the 
probability of expected im- provement [53], are widely used as infill 
criteria. This step to select further designs that offer improvement is 
iterative till a certain convergence criterion or termination criterion 
is reached. More examples of a single-phase criterion can be found in 
[54] that use an RBF surrogate model.

In [55], Bjorkman and Holmstrom generalized the EI measure 
which is used to optimize a certain bumpiness function. The poten-
tial Lipschitz constants and response surfaces (PLRS) technique was 
proposed by Liu et al. in [56] as a tunable algorithm that balances be-
tween exploration and exploitation. The adaptive metamodel based 
global optimization (AMGO) algorithm [57] is an SBGO that combines 
the Kriging and RBF models. It is effective only for a certain sort of 
optimization problems, problems that have a few modes. But when 
this technique is used on complicated problems, it does not perform 
well due to that is used a single-phase criterion, where it sometimes 
favors exploration over exploitation or vice versa; meaning that they 
affect one another. To decipher this dilemma, most of recently de-
veloped techniques belong to multi-phase criteria. For instance, the 
super-EGO (efficient global optimization) technique, developed by 
Sasena [58], has multi-phase criteria not only two phase criteria for 
exploration and exploitation; but, there is also another one for insur-
ing that the new sample point is feasible. Moreover, the multi-start 
space reduction (MSSR) algorithm [59] is a multi-phase sampling 
technique. It uses the kriging function as a surrogate model, divides 
the design space into three design sub-spaces GS (global space), MS 
(medium space), and finally LS (local space). In every iteration of this 
technique, at least three sample points are selected from the design 
sub-spaces. While these algorithms make use of several phases, but 
the transitions between phases are repetitive and not adaptable.

The ARSM-ISES algorithm [60] involves multi-phase criteria and 
is adaptive. It employs the maximum distance criterion as an explo-
ration criterion and utilizes the exploita- tion of the surrogate model 
as an exploitation criterion. Multiple-phase criteria are utilized in the 
AMP-SBGO technique [61] to construct an efficient SBGO sampling 
algorithm. To select a point and progressively acquire the global opti-
mum, the sampling criterion involves two distinct stages that search a 
localized region of interest and a global design domain. This is a sam-
pling technique with tight transfer requirements from one phase to 
another. An adaptive sampling optimization technique based on the 
complex method was proposed by Xu et al. in [62]. The adaptive sam-
pling strategy couples the process of adding points with the optimiza-
tion process. An initial kriging surrogate model is generated using the 
initial sample points as well as one or more complex shapes. The krig-
ing surrogate model and the complex shapes are then utilized to yield 
new replacement points. In this method, the replacement point of a 
complex shape is determined to efficiently capture the information 
of the optimization direction. Next, the replacement point is added 
to the initial sample set as a new sample in the optimization process 
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to update the surrogate model. It is worth noting that when sever-
al complex shapes are used concurrently, numerous complex forms 
occasionally search in the same optimization direction, resulting in a 
decreased computational efficiency.

Test Problems and Applications
There is a variety of benchmark test functions that must be in-

vestigated to evaluate the performance of any new surrogate-based 
optimization technique; for instance, the authors in [63] collect sev-
eral non-smooth unconstrained, bound constrained, and inequality 
constrained test problems. More test problems; some of which are 
unconstrained, and others are linearly con- strained minimax op-
timization problems, can be found in [64]. Applications of SGBO to 
aeronautics over the past decades are vast [65-67], especially when 
involving expensive computational fluid dynamics (CFD) simulations 
of airfoils and wings [68].  More efforts are exerted to reduce the 
need for expensive DOE through adaptive sam- pling [69,70]. Conn-
ventionally, a Kriging-based method is employed to build a surrogate 
model, although other models such as RBFs [71] and the Gaussian 
Process [72] have been also used. Ma- chine learning models such 
as deep neural networks [73-75], Generative Adversarial Networks 
(GAN) [76,77] and Deep Belief Network (DBN) [78] are other types 
of surrogates that have been employed for aerodynamic shape opti-
mization (ASO) of airfoils [73-75] and wings [76,78,75]. In [79], it is 
demonstrated that evolutionary multi-objective optimization(EMO) 
and RBF network with a priori bias are powerful tools for performing 
multi-objective optimization of multi-physics systems such as a disc 
brake system of a heavy truck. Additionally, different surrogate mod-
els are used to optimize the performance of an air impulse turbine for 
ocean wave energy harvesting by CFD analysis [80]. More interesting 
are the applications of surrogate-based modeling and optimization in 
the field of biomedical systems. For instance, Srinivas et al. used krig-
ing model for building response surfaces for two-dimensional flow 
of blood in [81]. Coronary stents are cardiovascular medical devices 
vastly used in the treatment of coronary heart disease.  In [82], the 
authors used multi-ojective optimization and SGBO for finding new 
geometric designs of coronary stents with the goal of achieved im-
proved biomechanical performance.

In [83], Tammareddi et al. ad- ditionally included uncertainties in 
their optimal design seeking procedure to yield more robust stent de-
signs minimizing possible risks. On the other hand, the authors in [84] 
investigated the use of non-uniform rational basis splines (NURBS) in 
representing the stent geometry and demonstrated its effectiveness 
in the results of their shape optimization procedure. G. Alaimo et al. in 
[85] proposed a methodology for designing Nitinol stents that com-
bines structural finite element analysis with a multi-objective genetic 
algorithm based on a kriging surrogate model. They resorted to the 
use of surrogates to reduce the computational complexity of their 
proposed approach. Other efforts in the field of stent geometry opti-
mization include the work presented by Putra, et al. in [86]. They con-

sidered both triangular and rectangular struts in their study. SGBO 
based on a kriging model has been used with the objective of max-
imizing the expected hypervolume improvement. Other prosthetic 
devices design optimization problems include hip prosthesis design. 
In [87], cementless hip prosthesis design optimization is formulated 
as a multi-objective, reliability-based optimization problem. They em-
ployed finite element analysis and surrogate based optimization. The 
constructed kriging surrogate models are validated and tested using 
several measures. More- over, the optimization of stimulus energy for 
cochlear implants is another challenging problem. In [88], a convolu-
tional neural network surrogate model of an auditory nerve fiber is 
constructed to avoid conducting simulations with a realistic biophys-
ical system, which is a time-consuming process.

Major Challenges
Designers face numerous challenges in the seek of the best design 

under given constraints. One major challenge is the selection of the 
design evaluation criteria or design objectives. Usually, there is more 
than one objective to be satisfied. The issue is that the design criteria 
are conflicting goals and there is a need for a good trade-off between 
them. Another challenge related to the design objectives appearing 
in many applications is that their evaluation involves a complicated 
and computationally expensive procedure. They are mostly in the 
form of black-box functions relating the design parameters and the 
system response. Even for problems with a small dimension, the opti-
mization problem may consume a long time to find its solution due to 
the complex simulations required to evaluate the design. Both types 
of challenges are faced by designers that need to solve shape optimi-
zation problems encountered in aeronautics and prosthetic devices 
design. The use of derivative-free optimization techniques with sur-
rogate models has become a popular solution methodology in such 
applications. However, the design of a surrogate-based optimization 
algorithm is not an easy task. The selection of an appropriate surro-
gate model is a key step in such an algorithm. There is a variety of 
surrogate models that range from simple regression models to com-
plex machine-learning based models. Moreover, the choice of the ini-
tial sample points plan can have a significant role in cutting down the 
overall running time of the optimization algorithm. Building consis-
tent surrogate models that conform with the original objective func-
tion is crucial to finding the true optimal designs. Development of an 
adaptive sampling strategy, which carefully adds new sample points 
at which the expensive function is evaluated, is yet another challeng-
ing step. From the above review, it is apparent that there is still for 
improvement in the design of new sampling strategies to balance be-
tween exploration and exploitation. Producing reliable designs in the 
presence of uncertainties is a challenging issue to be considered by 
designers. Appropriate statistical tools should be incorporated within 
the optimization procedure to ensure reliability of obtained designs. 
It is noteworthy that somehow the suitability of a SBGO strategy is 
problem-dependent and thus the designer needs to be aware of the 
different strategies to address a problem in hand.
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Conclusion
In this article, surrogate-based optimization has been briefly 

explained with an eye on biomedical applications. Prosthetic devic-
es design and stimulus energy optimization are two interesting ap-
plications of surrogate-based optimization. The stages involved in a 
surrogate-based optimization procedure have been discussed and 
commonly used surrogate models have been reviewed. The main 
challenges faced by designers when solving a practical optimization 
problem have also been highlighted.
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