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Introduction
The application of periodic protrusions on the walls of the 

washed surfaces is a well-tested method of vortex intensification 
of heat exchange [1-3]. The intensification of heat transfer for the  

 
conditions of the flow of heat carriers in pipes with turbulators has 
been carried out and is being carried out mainly by experimental 
methods [1-3], and theoretical studies are quite few, many of 
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them are based on integral approaches [4-8]. At the present stage 
of research, the problems of aeromechanics and thermophysics 
of separation and vortex flows are increasingly being solved by 
the methods of multi-block computing technologies based on 
intersecting structured grids [9-13]. The present study is a logical 
continuation of the above computational methods [14-25] for 
the analysis of turbulent flow and heat exchange in pipes with 
semicircular flow turbulators (diaphragms) with different relative 
heights, steps for different modes of coolant flow in order to analyze 
in more detail the intensification of heat exchange for heat carriers 
with different Prandtl numbers. Previously, this aspect was not fully 
investigated.

Mathematical and Discrete Models
In this paper, a system of Reynolds and energy equations 

written in natural variables is solved using completely implicit 
finite-difference schemes on a centered non-uniform skew-angle 
grid. To calculate the pressure field, the SIMPLEC procedure is used; 
the principle of splitting by physical processes takes place. The 
convective terms are approximated using a quadratic counterflow 
scheme. The difference equations are solved using a highly efficient 
method of incomplete matrix factorization with accelerated 
convergence using the additive correction method. A multi-block 
algorithm for solving the problem on intersecting multi-scale grids, 
tested in solving problems of vortex dynamics and heat transfer [9], 
is used for the correct description of turbulent heat transfer. The 

description of turbulent transport is implemented using the zonal 
low-Reynolds Menter model [13]. The study considered channels 
of constant cylindrical cross-section with eight turbulators located 
on the walls in the form of periodic diaphragms of semicircular 
cross-section. The parameters were changed in the following 
ranges: d/D=0.95¸0.92; t/D=0.25¸1, where it is the placement step 
of the turbulators; d is the diameter of the diaphragm; D is the 
pipe dimeter; Re=104¸105 is the Reynolds number; Pr=1¸20 is the 
Prandtl number (for limited calculations -Pr=1¸0.05). Briefly, the 
calculation model can be characterized as follows.

The three-dimensional computational domain under study 
has several sections, each of which consists of a single protrusion 
(Figure 1). The calculation assumes that with the considered 
number of turbulators, the turbulent flow becomes steady. In the 
main part of the study, the calculation of heat transfer was carried 
out under a boundary condition on a wall of the first kind with a 
sequential change in the Prandtl number from 1 to 20 in order 
to establish the regularity of changes in the intensification of 
heat transfer for various heat carriers. At the preliminary stage 
of the study, a modification of a multidisciplinary computational 
complex for numerical modeling of spatial separation flows and 
vortex heat exchange is carried out in order to adapt and refine 
the mathematical model of flow and vortex heat exchange in 
channels with turbulators, assuming the emergence of spatial 
vortex structures responsible for the vortex intensification of heat 
exchange processes in the wall zones of pipes with turbulators. 

Figure 1: The pipe grid consisting of several sections with a semicircular turbulator located in the middle, the input and output 
smooth sections.

In order to solve the problem of intensified heat transfer, the 
calculated three-dimensional grid was constructed in the same 
way: a two-dimensional grid was constructed in axial and radial 
coordinates, unfolded along the circumferential coordinate with 
a constant step. In order to achieve the necessary resolution in 
the vicinity of the obstacle, two-dimensional grids were used 
in the form of multi-tiered structured grids, and the obstacle 
was described on the most detailed grid with the highest spatial 
resolution. The detailed grid was embedded in a coarser grid, which 
was used to describe the flow in the near track of the obstacle, and 
the transition from the wall area to the axis was also carried out 
using intermediate grids, the purpose of which was to increase the 
longitudinal step of the grid in the area of the obstacle and change 
the resolution along the circumferential coordinate. In the future, 
we will not dwell on the details of the model aspects of numerical 

calculations using this method, since they were considered in 
[2,5,9-11,13,15,16,18,19,23, 26].

Data for Initial Calculations
In the inlet section of the pipe section under consideration, a 

uniform flow with a thin boundary layer allowing for variation was 
considered; the turbulence parameters correspond to experimental 
tests in the pipe, assuming the turbulence scale of the order of the 
pipe diameter, which is chosen as the characteristic size, and the 
degree of turbulence is assumed to be one and a half percent. In 
the output section of the pipe section under consideration, “soft” 
boundary conditions are set, otherwise called solution continuation 
conditions, which are characterized by extrapolation of parameters 
outside the calculation area. On the walls of the pipe washed by 
the coolant, which are considered isothermal under boundary 
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conditions of the first kind and have a temperature greater or lower 
by a certain number of degrees with respect to the temperature of 
the incoming flow, there are adhesion conditions. For the selected 
channel geometry, each individual problem from several sections 
is solved in two stages: first, the dynamic problem is solved, after 
which the thermal problem for various Prandtl numbers is solved 
for the pre-calculated fields of the flow velocity components and 
turbulence characteristics. The convergence criteria for the dynamic 
problem are determined by limiting the errors in calculating the 
Cartesian components of the velocity, and for the thermal problem 
- by limiting the increment of heat fluxes on the walls; in this work, 
the value 0.0001 was taken as a relative error.

Influence of the Prandtl Number on Heat Transfer 
in Straight Round Pipes with Periodically Arranged 
Surface Turbulators of a Semicircular Cross-
Section Flow at Various Geometric and Operating 
Parameters

The resistance coefficient ξ and the averaged Nusselt number 
Nu for a pipe with semicircular turbulators during turbulent 
convective heat exchange in this paper were determined by 
the calculation method based on the numerical solution of the 
system of Reynolds equations closed using the Menter shear 
stress transfer model and the energy equation on multi-scale 
intersecting structured grids. The adequacy of the applied method 
is justified by the fact that earlier for comparison in [5,15-17,19-
20,22-24] similar experimental data on heat transfer and hydraulic 
resistance were used for pipes with semicircular turbulators or 

diaphragms, where there was a good correlation between theory 
and experiment. Identified in the author’s previous theoretical 
works (for example, in [5,15-17,19-20,22-24]) the adequacy of 
the existing experimental data of the implemented computational 
model for local and averaged characteristics of flow and heat 
exchange in pipes with turbulators determines its application in 
order to identify the regularity of integral (averaged) parameters of 
heat exchange in pipes with different Prandtl numbers, depending 
on the geometry of the channel and the flow regime of the coolant. 

In this study, only the most common turbulators of semicircular 
cross-section, characteristic of pipes with diaphragms, are 
considered. This question is important, since it is necessary to 
know for which Prandtl numbers there is a higher intensification 
of heat transfer depending on the determining parameters. The 
calculation of the intensified heat exchange according to this 
factorized control-volumetric method was carried out for the most 
characteristic geometric and regime characteristics for pipes with 
turbulators (d/D=0.92; 0.90; t/D=0.25; 0.50; 1.00; Re=104; 105) 
[1-3] for a fairly wide range of Prandtl numbers, Pr=1÷20. As an 
illustration of the calculated data obtained by this method, Fig. 2-4 
shows the characteristic calculated current lines for pipes with 
transverse annular turbulators of semicircular cross-section for the 
considered flow conditions for closed (Figure 2), semi-open (Figure 
3) and open (Figure 4) depressions (classification according to [5-
8]), respectively. The values of the relative heat transfer Nu/NuGL 
for various Prandtl numbers, all other things being equal, were 
calculated for isothermal flow at equivalent parameters for both 
pipes with and without turbulators. 

Figure 2: Calculated current lines for a closed cavity in a pipe with turbulators with a semicircular cross-section at Re=105; d/
D=0.92; t/D=0.25.

Figure 3: Calculated current lines for a semi-open cavity in a pipe with turbulators with a semicircular cross-section at Re=104; 
d/D=0.95; t/D=0.25.
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Figure 4: Calculated current lines for an open cavity in a pipe with turbulators with a semicircular cross-section at Re=104; d/
D=0.92; t/D=1.00.

The obtained calculation results based on the proposed 
model for the above range of determining parameters are 
shown in (Figure 5-7), where they are distributed over small (t/
D=0.25), medium (t/D=0.50) and large (t/D=1.00) steps between 
turbulators. As can be seen from (Figure 5-7), for relatively small 
Reynolds numbers (Re=104), first there is a noticeable increase in 
the relative heat exchange of Nu/Nu with an increase in the Prandtl 
number, then the relative heat exchange changes less: for small 
steps, there is an increase in it, for medium - almost stabilization, 

for large - a slight decrease. For relatively large Reynolds numbers 
(Re=105), there is a decrease in the relative heat transfer with an 
increase in the Prandtl number, with its practical stabilization for 
the largest values from the considered range of Prandtl numbers. 
The difference in the patterns of changes in relative heat transfer 
depending on the Prandtl number (Figure 5-7) is justified by the 
fact that for small Reynolds numbers, the height of the turbulator 
is less than the height of the wall layer [1-3,26-27], and for large 
Reynolds numbers-less. 

Figure 5: Calculated values of the relative heat transfer Nu/NuGL for t/D=0.25; d/D=0.92 and 0.90; Re=104 and 105 depending 
on the Prandtl number Rg=1÷20.

Figure 6: Calculated values of the relative heat transfer Nu/NuGL for t/D=0.50; d/D=0.92 and 0.90; Re=104 and 105 depending 
on the Prandtl number Rg=1÷20.
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Figure 7: Calculated values of the relative heat transfer Nu/NuGL for t/D=1.00; d/D=0.92 and 0.90; Re=104 and 105 depending 
on the Prandtl number Rg=1÷20.

Figure 8: Calculated values of the relative heat transfer Nu/NuGL for d/D=0.912; t/D=0.50; Re=104 depending on the Prandtl 
number Rg=1÷100.

Figure 9: Calculated current lines for the flow in a pipe with turbulators of semicircular cross-section at Re=104; d/D=0.912; 
t/D=0.50.

The latter causes turbulence only of the flow core, increasing 
only the hydraulic resistance, almost without increasing the heat 
exchange. Experimental confirmation of the given theoretical data 
was given in the works [1-3,26-27], where the actual experiments 
of the authors, the experiments [28], as well as the regularities 
for the limiting heat transfer are analyzed [1-3,26-27]. Another 
confirmation of the calculated numerical dependences obtained 

is the data of analytical solutions for intensified heat transfer 
obtained using a modified four-layer model of a turbulent boundary 
layer [4-5,7-8]. Within the framework of this work, calculations 
were performed for conditions similar to those characteristic of 
the above-mentioned experiments [13] (d/D=0.912; t/D=0.50; 
Re=104; Pr=1,15÷6,7) [1-2, 3], which are shown in Fig. 8 (the 
calculated current lines are shown in Fig. 9), from which it can 
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be seen that the theoretical nature of the change in relative heat 
transfer from the Prandtl number is completely similar to the 
experiment [1-2, 3]. In classical works on intensified heat exchange 
[1-2, 3], it is indicated that there are no reliable experimental data, 
but it is assumed that artificial turbulization of liquid metal flows 
should have low efficiency [1-2, 3]. 

Within the framework of this work, the simulation of intensified 
heat exchange during the flow of liquid metals in only a limited range 
was carried out, since this aspect is not the main one for this work, 
which showed that the relative heat exchange for the conditions of 
the above experiments [28] decreases by 12% for Rg=0.5 relative 
to the relative heat exchange for Rg=1; similar decreases for 
Rg=0.1 and Rg=0.05 are 37% and 40%, respectively. Therefore, it is 
theoretically confirmed that the intensified heat exchange for liquid 
metals is lower than for gaseous heat carriers. The above is also 
confirmed by the data of analytical solutions for intensified heat 
transfer obtained using a modified four-layer model of a turbulent 
boundary layer [4- 5, 7-8]. The theoretical calculated data obtained 
in the work for a limited range of determining parameters on a 
decrease in the level of heat exchange intensification for small 
Prandtl numbers determine the prospects of this scientific direction 
- in the future, using this model, it will be possible to calculate the 
relative heat exchange in pipes with diaphragms for liquid metals 
for a wide range of channel geometry and the flow regime of the 
coolant. The above analysis indicates that the theoretical data fully 
correspond to the existing experimental material, significantly 
overlapping the range of the determining parameters of the latter. 
The theoretical data made it possible to identify patterns of relative 
heat transfer depending on the Prandtl number in those areas 
where there are no reliable experimental data yet.

Conclusion
1.	 The calculation method developed and used in this study, 

based on the solution of the Reynolds equations by the finite-volume 
method, closed using the Menter shear stress transfer model and 
the energy equation on multi-scale intersecting structured grids, 
allowed us to calculate the relative heat transfer in pipes with 
semicircular annular turbulators for heat carriers with different 
Prandtl numbers with acceptable accuracy.

2.	 The study analyzed the calculated dependences of the 
relative heat transfer on the Prandtl number Rg at different values 
of the relative height of the turbulator h/D, the relative step 
between the turbulators t/D, at different values of the Reynolds 
number Re, all other things being equal, which showed qualitative 
and quantitative changes in the calculated parameters.

3.	 The calculations carried out in the work showed that with 
an increase in the Prandtl number for small Reynolds numbers, first 
there is a noticeable increase in the relative heat exchange, and then 
the relative heat exchange changes less, and for small steps there 

is an increase in it, for medium - almost stabilization, for large - a 
slight decrease.

4.	 For large Reynolds numbers, the relative heat transfer 
decreases with an increase in the Prandtl number with its further 
stabilization.

5.	 The analytical justification of the calculated regularities 
obtained is that for small Reynolds numbers, the height of the 
turbulator is less, and for large ones - less than the height of the 
wall layer, therefore, only the flow core is turbulized, which only 
leads to an increase in hydraulic resistance and to an exaggeration 
of heat transfer.

6.	 In the work, on the basis of limited computational material, 
a noticeable decrease in the level of heat transfer intensification for 
small Prandtl numbers was theoretically confirmed. The obtained 
results of intensified heat transfer in the region of low Prandtl 
numbers justify the promising development of research in this 
direction.

The theoretical data obtained in the work determined the 
regularities of relative heat transfer in a wide range of Prandtl 
numbers, including in those areas where experimental material 
does not yet exist.
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