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Introduction 

Virgin olive oil (VOO) is produced from the fresh, immaculate 
olive fruits of Olea europaea L. employing mechanical and physical 
techniques [1]. VOO has grown in popularity amongst consumers 
due both to its pleasant qualities and its health benefits. These 
qualities are derived from the primary characteristics of olive 
oil such as phytosterols, tocopherols, and polyphenols, and the 
fact that VOO has elevated levels of monounsaturated fatty acids 
(MUFA), the principal element being oleic acid [2]. Disparities in  

 
geography, agronomy, and technology all contribute to variations in 
the chemical configuration of VOO. Moreover, geographically based 
compositional differences inform legislative initiatives, such as 
those designed to safeguard both the denomination of origin (PDO) 
and the protected geographical indication (PGI) [3,4]. The PGI and 
PDO certifications not only allow consumers to identify the areas 
where olive oil products were produced but also secures economic 
advantages for olive growers in regions that have been accorded 
specific designations.
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VOO can be categorized according to both the region in which 
it is produced [5,6] and the cultivar of olive involved [7,8]. This 
classification is achieved using chemometrics combined with an 
array of data related to the composition of the oil, including its fatty 
acid (FA) content [9-11]. The profiles of FAs are primarily influenced 
by the relevant plant variety [12,13]. From the perspective of genetic 
diversity, monovarietal olive oils derived from specific varieties 
possess defined physical and biochemical characteristics that imbue 
the resultant oil with distinguishing qualities. Hence, FAs are highly 
important in the determination of the character and authenticity 
of VOO. The unique aromas of different VOOs are shaped by the 
presence of volatile compounds (VCs). The unique characteristics 
of different VOO volatiles are the consequence of both the ripening 
process and the enzymatic and chemical reactions which transpire 
during oil extraction and production. Volatile character and content 
are the product of an array of variables, including plant variety, 
geographical location, altitude, regional climate and temperatures, 
and technological considerations [14-17]. 

Greece is a major producer of olive oil. Figures published by 

Eurostat indicate that this country is the fourth largest olive oil 
exporter in the European Union [18]. Therefore, ensuring that the 
nation’s olive oil products accord with quality controls through 
effective regulatory and measuring processes is of immense 
economic significance to Greece. Moreover, it is essential that Greek 
olive oil retains consumer confidence by being accurately checked 
and authentically labeled since VOO is a product for which the value 
is closely allied to the manner in which it is produced and processed. 
The most frequently researched olive oil cultivar in Greece is the 
Koroneiki cultivar [5,9,19,20]. This means that other economically 
significant varieties have been overlooked including the Amfissis 
(or Konservolia) cultivar (Olea europaea var. med. rotunda) that is 
popular across large parts of Thessaly and Central Greece [21]. For 
this reason, the current study investigates the FA and VC content of 
VOO samples produced from the Amfissis cultivar originated from 
the Phocis region of Central Greece and the Magnesia region of 
Thessaly (Figure 1) using chemometrics. The aim of this study is to 
make a comparative evaluation of the samples from these two areas 
to identify the VOOs by their region, thereby rendering it possible to 
establish the regional authenticity of VOO in Greece.

Figure 1: Map of Greece showing the location of Phocis and Magnesia regions of VOOs samples from the Amfissis olive oil 
cultivar.

Materials and Methods
Samples

A total of 29 VOO samples were obtained from local olive oil 
mills under the framework of the research program QuaAuthentic_
GR, during the 2018-2019 harvesting period. The VOO samples 
were originated from the geographical regions of Magnesia (16 

samples) and Phocis (13 samples). Olives were picked by hand or 
collected in nets at the stage of maturity index 5–6 and processed in 
selected local olive mills using the three-phase system technology. 
Samples were collected from November to the end of January and 
stored in dark glass bottles of 500 mL. The analyses of VOOs were 
performed soon after the production of olive oil.
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Determination of Quality Indices

All the quality indices were determined according to the official 
method of the Commission Regulation (EEC) No 2568/91 [22]. 
Free acidity was expressed as % oleic acid and peroxide value was 
expressed as meq O2/kg. K232, K270 and ΔK were calculated from the 
absorption at 232–270 nm. 

Determination of Fatty Acids 

Fatty acid methyl esters (FAME) were prepared according 
to the official method of the Commission Regulation (EEC) No 
2568/91 [22]. FAME were prepared in a screwcap vial, by vigorous 
shaking of the olive oil solution in hexane (0.1 g in 5 mL) with 0.5 
mL of 2 N methanolic KOH. The analysis was performed by gas 
chromatography utilizing a Perkin Elmer Clarus 500 chromatograph 
(Perkin Elmer, Waltham, MA, USA) with a flame ionization detector. 
The column used was Supelco SP-2560 capillary column (75 m 
× 0.18 mm id × 0.14 μm film thickness) (Supelco, Bellefonte, PA, 
USA). Helium was used as the carrier gas with a flow rate of 1.5 
mL/min. The injection volume used was 1 μL and the injector was 
operated at 250°C in split mode (20:1 split ratio). The column 
was maintained at 140°C held for 5 min, heated to 170°C at a rate 
of 8°C/min, heated to 210°C at a rate of 2°C/min held for 2 min, 
heated to 250°C at a rate of 20°C/min and held to 250°C for 10 min. 
The FAs were identified based on their retention times, utilizing a 
FAME standard mixture (Sigma-Aldrich, St. Louis, MO, USA). The FA 
content was expressed as a percentage m/m from the peak area. 

Analysis of Volatile Compounds

The volatile compounds of VOOs were determined by solid 
phase microextraction-gas chromatography-mass spectrometry 
(SPME/GC-MS) in accordance with the method of [19] with few 
modifications. Five grams of VOO and 1 μL of β-ionone (Alfa Aesar, 
Ward Hill, MA, USA) along with a micro-stirring bar were introduced 
into a 15 mL screw top glass vial with PTFE/silicone septa. The 
SPME procedure was carried out using a divinylbenzene/carboxen/
polydimethylsiloxane (DVB/CAR/PDMS) fiber (Supelco, Bellefonte, 
PA, USA) with 1 cm length. The vial was placed in a 50˚C water bath 
and stirred at 700 rpm. The VOO sample was equilibrated for 30 
min. Subsequently, the needle of the SPME fiber was inserted into 
the vial and exposed to the headspace. After 15 min, the fiber was 
retracted from the vial and inserted into the gas chromatograph. 
The volatile compounds were analyzed using a Thermo GC-TRACE 
ultra, coupled with a Thermo Mass Spectrometer DSQ II (Thermo 
Scientific Inc., Waltham, MA, USA). The desorption conditions were 
as follows: GC inlet temperature of 260˚C for 3 min in the splitless 
mode with a 0.8 mm injector liner (SGE International Pty Ltd, 
Australia). 

The column used was a Restek Rtx-5MS, 30 m x 0.25 mm x 0.25 
μm (Restek, Bellefonte, PA, USA). Helium carrier gas flow rate was 
1.0 mL/min. The column was maintained at 40˚C held for 6 min, 

then heated to 120˚C at a rate of 5˚C/min, then heated to 160˚C 
at a rate of 3˚C min, then heated to 250˚C at a rate 15˚C/min and 
held to 250˚C for 1 min. The conditions of mass spectrometer 
were: quadrupole temperature: 150˚C; source temperature: 240˚C; 
transfer line temperature: 290˚C; acquisition mode: electron 
impact 70 eV and mass range m/z: 35-650. The identification of VC 
was conducted by the comparison of spectral data and arithmetic 
index of the VC to those of the Wiley 275 mass spectra library and 
Adams [23]. Retention index (RI) values of VC were calculated 
using n-alkane (C8–C20) standards (Supelco, Bellefonte, PA, 
USA). Quantification of VC was accomplished by dividing the peak 
areas of the compounds by the peak area of the internal standard 
(β-ionone) and multiplying this ratio by the initial concentration of 
the internal standard. The peak areas were obtained from the full 
scan chromatograph using the total ion current.

Statistical Analysis

Prior to the performance of statistical analysis the data were 
standardized by the XLSTAT ver. 2020.3.1.0 software (Addinsoft 
Deutschland, Andernach, Germany). Shapiro-Wilk normality test, 
Spearman’s rho correlation coefficients and Principal Component 
Analysis (PCA) were accomplished utilizing the JMP software 
version 13.0 (SAS Institute Inc., Cary, NC, USA). The mean values and 
standard deviation of each parameter from the quality indices, FAs, 
and VCs were calculated in Microsoft Excel based on the samples of 
each region (n=16 for Magnesia and n=13 for Phocis).

Results 
Conventional Quality Parameters

The analysis of conventional quality parameters is presented 
in Table 1. Free acidity of olive oil samples ranged from 0.54±0.22 
to 0.16±0.04 and the peroxide values were between 13.69±5.36 to 
18.02±1.97 meq O2/kg oil. K232 spectroscopic value of the samples 
used in this study ranged from 2.17±0.41 to 2.21±0.23, and the K270 
values were between 0.15±0.04 and 0.18±0.07. ∆K was 0.00±0.00 
for all samples analyzed. The refractive index of olive oil samples 
ranged from 1.469±0.000 to 1.470±0.000.
Table 1: Mean values and standard deviation (S.D.) of 
conventional quality indices of VOO samples from the Magnesia 
(n=16) and Phocis (n=13) regions.

Quality indices Magnesia Phocis

 aMean ± S.D. bMean ± S.D.

Acidity (% oleic acid) 0.54 ± 0.22 0.16 ± 0.04

Peroxide Value 
(meqO2/Kg)  13.69 ± 5.36  18.02 ± 1.97

K232 2.17 ± 0.41 2.21 ± 0.23

K270 0.15 ± 0.04 0.18 ± 0.07

∆K  0.00 ± 0.00 0.00 ± 0.00

Refractive index  1.469 ± 0.000 1.470 ± 0.000

Note: an= 16 samples; bn=13 samples.
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Fatty Acid Composition 

The analysis of FA composition revealed the presence of eleven 
FA (Table 2), with a small variance in composition as a result of 
the different geographical origin of VOOs. Oleic acid (C18:1) was 
the dominant FA for both Magnesia (75.15% ± 1.21) and Phocis 
(75.71% ± 1.99) regions. Slightly higher concentrations of palmitic 

acid (C16:0), α-linolenic acid (C18:3) and arachidonic acid (20:4) 
were observed in Amfissis VOO samples from the Magnesia region. 
The major saturated fatty acids (SFA) were palmitic acid (C16:0) 
determined in highest concentration in Magnesia (11.63% ± 0.48) 
and stearic acid (C18:0) with the highest concentration observed in 
the samples from the Phocis region (2.33% ± 0.21).

Analysis of Volatile Compounds

The results from the determination of volatiles is presented 
in Table 3. Twenty six VCs (6 alcohols, 8 aldehydes, 2 ketones, 

9 hydrocarbons, 1 ester) were identified and semi-quantified 
using the SPME-GC-MS technique. The prominent VCs from both 
geographical regions (Magnesia and Phocis) were (E)-2-hexenal, 
(E)-2-hexen-1-ol, 1-hexanol, (E)-β-ocimene and methylcyclodecane. 

Table 2: Mean values and standard deviation (SD) of fatty acid composition (%) of VOO samples from the Magnesia (n=16) and 
Phocis (n=13) regions.

Fatty acids Magnesia Phocis

 aMean ± S.D. bMean ± S.D.

Palmitic acid (C16:0) 11.63 ± 0.48 10.72 ± 1.57

Palmitoleic acid (C16:1) 0.71± 0.08 0.67 ± 0.21

Stearic acid (C18:0) 2.26 ± 0.14 2.33 ± 0.21

Oleic acid (C18:1) 75.15 ± 1.21 75.71 ± 1.99

Linoleic acid (C18:2) 7.81 ± 0.75 8.09 ± 0.38

α-Linolenic acid (C18:3) 0.75 ± 0.04 0.71 ± 0.09

Arachidic acid (C20:0) 0.43 ± 0.02 0.44 ± 0.03

Gadoleic acid (C20:1) 0.34 ± 0.01 0.34 ±0.03

Arachidonic acid (C20:4) 1.01 ± 0.14 0.70 ± 0.10

Behenic acid (C22:0) 0.13 ± 0.01 0.13 ± 0.01

Lignoceric acid (C24:0) 0.07 ± 0.01 0.06 ± 0.01
cΣSFAs 14.52 ± 0.38 13.69 ± 1.57

dΣMUFAs 76.19 ± 1.17 76.72 ± 1.82
eΣPUFAs 9.56 ± 0.68 9.50 ± 0.37

eMUFA/PUFA 8.01 ± 0.59 8.10 ± 0.46

C18:1/C18:2 9.71 ± 0.93 9.39 ± 0.62

Note: an= 16 samples; bn=13 samples; cΣSFAs= Sum of Saturated Fatty Acids; dΣMUFAs = Sum of Monounsaturated Fatty Acids; eΣPUFAs: 
Sum of Polyunsaturated Fatty Acids; eMUFA/PUFA: Monounsaturated Fatty Acids/Polyunsaturated Fatty Acids.

Table 3: Mean values (mg kg-1) and standard deviation (S.D.) of identified volatile compounds in Amfissis VOO samples originated 
from the Magnesia (n=16) and Phocis (n=13) regions.

Compounds RIa RI litb
Magnesia Phocis

cMean ± S.D. dMean ± S.D.

Alcohols

3-methyl-1-butanol 714 723 0.8 ± 0.6 0.5 ± 0.7

2-methyl-1-butanol 715 724 0.1 ± 0.2 1.3 ± 2.4

1-pentanol 754 762 0.6 ± 1.5 0.0 ± 0.0

(Z)-2-penten-1-ol 758 765 1.5 ± 1.1 2.3 ± 2.1

(E)-2-hexen-1-ol 851 851 10.2 ± 6.5 17.1 ± 15.6

1-hexanol 855 863 9.3 ± 4.5 33.1 ± 25.5

Total 22.5 ± 4.7 54.2 ± 13.4

Aldehydes

2-butenal 623 627 0.2 ± 0.3 0.0 ± 0.1

(E)-2-pentenal 738 744 1.0 ± 0.5 0.2 ± 0.3
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(E)-2-hexenal 838 846 275.2 ± 100.8 78.4± 46.6

Heptanal 887 901 0.7 ± 0.3 0.3 ± 0.3

(E,E)-2,4-hexadienal 899 907 2.0 ± 2.2 1.0 ± 1.2

(E)-2-heptenal 945 947 0.7 ± 0.5 0.7 ± 0.5

Octanal 992 998 1.0 ± 0.7 0.6 ± 0.8

Nonanal 1096 1100 4.7 ± 2.2 2.3 ± 1.2

Total 285.4 ± 96.8 83.6 ± 27.5

Ketones

6-methyl-5-hepten-2-one 984 989 0.6 ± 0.8 0.2 ± 0.2

6-methyl-5-(1-methylethylidene)-6,8-
nonadien-2-one 1408 - 0.3 ± 0.7 0.1 ± 0.0

Total 0.9 ± 0.2 0.4 ± 0.1

Hydrocarbons

1-octene 785 788 0.2 ± 0.1 0.0 ± 0.0

(Z)-2-octene 802 808 0.1 ± 0.2 0.0 ± 0.0

3-ethyl-1,5-octadiene isomer 1 925 930 3.7 ± 1.5 4.5 ± 3.0

3-ethyl-1,5-octadiene isomer 2 932 930 6.1 ± 2.4 7.0 ± 4.6

(E)-β-ocimene 1038 1044 14.6 ± 6.1 6.5 ± 3.8

2-ethenyl-1,1-dimethyl-3-
methylenecyclohexane 1105 - 3.7 ± 2.8 0.5 ± 0.3

Methylcyclodecane 1204 1202 11.4 ± 4.1 18.4 ± 8.5

α-copaene 1370 1374 4.8 ± 1.4 6.9 ± 3.3

(E,E)-α-farnesene 1499 1505 6.6 ± 3.3 3.0 ± 2.3

Total 51.1 ± 4.8 46.8 ± 5.7

Esters

Hexyl acetate 1002 1007 0.1 ± 0.1 0.0 ± 0.0

Total volatiles 360.1 ± 53.4 184.9 ± 16.4

Note: aRI = tentative identification by retention index; bRI lit. = literature retention index; cn= 16 samples; dn= 13 samples

Spearman’s rho Correlation Coefficients

Correlations among the FA and VC concentrations from the 
regions of Magnesia (Figure 2) and Phocis (Figure 3) were studied 
using Spearman’s rho correlation coefficients in order to highlight 
similarities and differences between the samples. The Spearman’s 
rho correlation coefficients were selected over Pearson correlation 
coefficients as small deviations from normality were observed 
using the Shapiro-Wilk normality test. Strong positive (p ≤ 0.01) 
correlation patterns were observed for the FA arachidic acid 
(20:0) – α-linolenic acid (18:3) and arachidic acid (20:0) – behenic 
acid (22:0), whereas strong negative correlation patterns were 
observed between gadoleic acid (20:1) – palmitic acid (16:0) in 
both regions. Regarding VCs, strong positive correlation patterns 
were observed between the two isomers of 3-ethyl-1,5-octadiene, 
as well as for (E)-2-hexen-1-ol and 1-hexanol, for the VOOs from 
Magnesia and Phocis regions. In the VOOs from the Phocis region, 

strong antagonistic relationship was recorded between palmitic 
acid (16:0) – oleic acid (18:1) and strong positive correlations were 
observed for the FA, α-linolenic acid (18:3) – behenic acid (22:0) and 
the VCs (E)-2-pentenal – 1-octene, (E)-2-pentenal – (Z)-2-octene, 
hexyl acetate – 1-octene, hexyl acetate-(Z) – 2-octene, α-copaene 
– methylcyclodecane and (E)-2-hexen-1-ol-(Z) – 2-penten-1-ol. 
Differences were observed in the VOOs from the Magnesia region. 
Strong positive correlations were recorded among the compounds: 
stearic acid (18:0) – arachidic acid (20:0), stearic acid (18:0) – 
behenic acid (22:0), behenic acid (22:0) – 6-methyl-5-hepten-2-
one, 6-methyl-5-hepten-2-one – 1-pentanol, 6-methyl-5-hepten-2-
one – hexyl acetate, hexyl acetate – 1-pentanol, (E)-2-hexen-1-ol 
– 1-hexanol, (E)-2-hexen-1-ol – heptanal and (E)-2-hexen-1-ol – 
methylcyclodecane. Strong negative correlation was found between 
palmitic acid (16:0) and hexyl acetate.
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Figure 2: Color map on correlations among fatty acids and volatile compounds from Amfissis VOOs originated from the 
Magnesia region.

Figure 3: Color map on correlations among fatty acids and volatile compounds from Amfissis VOOs originated from the Phocis 
region.
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Principal Component Analysis

PCA was used to study possible grouping of VOO samples 
according to their geographical origin. Based on the data obtained 
from the FA composition the first two principal components 
(Figure 4) explained 67.9% of the total variance. According to the 
scores plot (Figure 4a), a separation of samples to a certain extent 
has been achieved, although it is evident that several VOOs from 
Phocis are classified in Magnesia region. The first two principal 
components contribute in the differentiation of samples, though 
the second principal component distinguishes the VOOs to a 
greater extent (Figure 4a). The FAs that mainly contribute in the 
separation of samples at the first principal component (Figures 
4b & 5) are gadoleic acid (20:1), palmitic acid (16:0), behenic acid 
(22:0), palmitoleic acid (16:1), arachidic acid (20:0) and oleic acid 
(18:1). In the second principal component the most important 

FAs are lignoceric acid (24:0) and arachidonic acid (20:4). Strong 
negative correlations between palmitic acid (16:0) – oleic acid 
(18:1) and palmitic acid (16:0) – gadoleic acid (20:1) were observed 
in the loadings plot (Figure 4b), confirming the Spearman’s rho 
correlations reported in this study. An efficient separation was 
observed from the application of PCA on the concentrations of 
VCs (Figure 6a). The first two principal components explained 
the 47.2% of the total variance. From the scores plot (Figure 6b) 
we observed that the majority of the VCs are positively correlated 
which also confirms the Spearman’s rho coefficients reported 
previously. The first principal component is the most important 
for the separation of VOOs. The VCs that mainly contribute in the 
separation of samples are 1-hexanol, (E)-2-pentenal, heptanal, (E)-
2-hexenal and (E,E)-α-farnesene (Figures 6b & 7).

Figure 4: a) Scores plot and

b) loadings plot obtained from principal component analysis of VOO samples based on fatty acid composition.

Figure 5: Partial contribution of fatty acids in the first three principal components.
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Figure 6:
a) Scores plot and
b) loadings plot obtained from principal component analysis of VOO samples based on volatile compounds.

Figure 7: Partial contribution of volatile compounds in the first three principal components.

Discussion
Conventional Quality Parameters

The quality parameters of samples (Table 1) were within the 
limits described in Commission Regulation (EEC) No 2568/91 [22] 

for extra virgin olive oil (EVOO) and VOO. Free acidity of samples was 
within the limits of ≤ 0.8 and ≤ 2.0 for EVOO and VOO, respectively, 
while the peroxide values were in accordance with the limits of ≤ 20 
meq O2/kg for EVOOs and VOOs. Limits for the spectroscopic values 
K232, K270, and ∆K according to EEC No 2568/91 are ≤ 2.50, ≤ 
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0.22, and ≤ 0.01 for the EVOO, and ≤ 2.60, ≤ 0.25, and ≤ 0.01 for 
VOO. Therefore the samples were classified as VOOs. 

Fatty Acid Composition 

The % mean values of FA of VOO samples were within the limits 
of the international olive oil council [24]. High levels of MUFA/
PUFA and oleic/linoleic acid (C18:1/C18:2) were observed in both 
regions indicating the high performance of VOOs against oxidative 
deterioration [25]. Limited research exists for the FA composition 
of olive oil from Amfissis cultivar. In a study from Andreou, et al. [26] 
the shelf-life of VOO extracted by non-thermal pretreatments from 
Amfissis, Tsounati and Manaki cultivars was evaluated. The oleic 
acid (18:1) and linoleic acid (18:2) levels for the olive oil samples 
from the Amfissis cultivar using the traditional olive oil extraction 
technology were 70.68% and 12.66%. In our study higher levels 
of oleic acid (18:1) and lower levels of linoleic acid (18:2) were 
observed in VOOs from both Magnesia and Phocis regions.

Analysis of Volatile Compounds

The flavor of VOO is attributed to a wide range of VC important 
for its quality assessment. Previous research reports indicated 
that the aldehydes exist in higher concentrations in olive oil 
compared to other flavor compounds [27]. This fact is confirmed 
in the current study since the total concentration of aldehydes 
determined in this study was 285.4 ± 96.8 mg kg-1 for Magnesia 
region and 83.6 ± 27.5 mg kg-1 for Phocis region, which is mainly 
attributed to the high levels of (E)-2-hexenal, a C6 aldehyde formed 
through the lipoxygenase pathway (LOX) pathway. This compound 
is responsible for the characteristic “green note” of olive oil [28]. 
The high levels of (E)-2-hexenal has been previously observed. 
In an earlier study of Greek olive oil it is reported that Amfissis 
olive oil samples had the highest concentration of (E)-2-hexenal 
compared to Koroneiki and Megaritiki olive oil samples [7]. 
However, the flavor of olive oil is not exclusively defined from the 
high concentrations of VCs. Other constituents, such as alcohols, 
ketones and esters are contributing in the flavor as well. The C6 
alcohols (E)-2-hexen-1-ol and 1-hexanol were the most prominent 
alcohols in this study which are produced through the LOX pathway 
and provide the characteristic “green” aroma and astringent-sour 
flavor of olive oil [29]. The fruity, sweet flavor is a result of the 
hexyl acetate whereas the presence of 6-methyl-5-hepten-2-one, 
formed from the degradation of terpenic alcohols, is responsible 
for the pungent and fruity odor of olive oil [28,29]. High levels of 
the terpenes (E)-β-ocimene and (E,E)-α-farnesene were detected in 
VOOs from Magnesia. These compounds are biosynthesized via the 
mevalonic acid pathway and are highly dependent on the botanical 
origin [30,31].

Spearman’s rho Correlation Coefficients

The results obtained from the Spearman’s rho correlation 
coefficients of FA may be attributed to the variance of activity of the 

enzymes called fatty acid desaturases that regulate the biosynthesis 
of FAs during the maturation of olives. Oleic acid (18:1) and linoleic 
acid (18:2) are inversely connected in a way that the increase of 
the one FA will induce the decrease of the other. The first FA that 
is produced during biosynthesis of FAs is palmitic acid (16:0), 
which is converted to stearic acid (18:0). Subsequently, the FAs 
oleic acid (18:1), linoleic acid (18:2) and α-linolenic acid (18:3) are 
produced by the catalyzing activity of FA desaturases (stearoyl-ACP 
Δ9-desaturase, oleate desaturase, linoleate desaturase) [32-34]. 
The strong positive correlation between arachidic acid (20:0) and 
stearic acid (18:0) has been previously reported from Stefanoudaki, 
et al. [9] and Kritioti, et al. [35] who studied olive oil samples from 
Koroneiki, Mastoides and Cypriot cultivars. 

Principal Component Analysis

PCA is a multivariate chemometric tool that is commonly used 
in classification problems. Gurdeniz, et al. [11] effectively applied 
the PCA method for the geographical separation of olive oil samples 
of Turkish origin, based on FA composition. The authors reported 
the FAs palmitoleic acid (16:1), oleic acid (18:1), linoleic acid 
(C18:2) and α-linolenic acid (C18:3) as the most significant for 
the differentiation of samples. In a study of Sicilian olive oils the 
PCA method was also successfully applied for the geographical 
differentiation and the FAs palmitoleic acid (16:1), oleic acid (18:1) 
and linoleic acid (C18:2) were the most influential variables for the 
separation of samples [10]. The high contribution of palmitoleic 
acid (16:1) for the geographical differentiation of samples is also 
confirmed in the present study. As previously mentioned, efficient 
separation of VOO samples from Phocis and Magnesia regions 
has been achieved in the current study based on the aldehydes 
(E)-2-pentenal, (E)-2-hexenal, and the alcohol 1-hexanol. These 
compounds are produced through the LOX pathway which involves 
the enzymes lipoxygenase and hydroperoxide lyase that oxidize and 
cleave, respectively, polyunsaturated fatty acids such as linoleic acid 
(18:2) and α-linolenic acid (C18:3) to yield aldehydes. The aldehydes 
are then reduced to alcohols by the enzyme alcohol dehydrogenase 
[36]. 1-hexanol is produced from the polyunsaturated FA linoleic 
acid (18:2), while the aldehydes (E)-2-pentenal and (E)-2-hexenal 
are produced from the oxidation of α-linolenic acid (C18:3). 

Aldehydes are considered as important compounds for 
the authentication of olive oil. Şişik Oğraş, et al. [6] reported 
an effective geographical separation of olive oil samples of 
Turkish origin from various locations (Mediterranean, Aegean, 
Southeastern Anatolia, Marmara, and the Black Sea) based on 
volatile composition. Aldehydes, and especially (E)-2-hexenal were 
the most significant compounds for the separation of samples. 
Vichi, et al. [37] used PCA for the differentiation of VOOs from two 
geographical areas of Northern Italy. The authors concluded that 
aldehydes, including (E)-2-hexenal, exhibited a strong dependence 
on geographical origin of samples, therefore indicating the 
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influence of environmental growth conditions on the activity of the 
enzyme alcohol dehydrogenase. The aldehyde heptanal, a product 
derived from the oxidation of linoleic acid (18:2) [38], was also 
a significant VC for the classification of VOOs. The sesquiterpene 
hydrocarbon (E,E)-α-farnesene is another important VC for the 
geographical differentiation of VOOs in the current study which is 
produced through the mevalonic acid pathway [31]. Terpenes can 
be useful markers for the authentication of geographical origin 
[39]. Terpenoid hydrocarbons have been effectively used for the 
geographical separation of extra virgin olive oils from West Liguria 
with the application of the PCA method [40].

Conclusion
In the present work, the analysis of the fatty acid composition 

and the volatile compounds profile of VOO samples of Amfissis 
cultivar originated from the Magnesia and Phocis regions was 
performed and studied using chemometrics. The high levels of 
MUFA (76.19% for Magnesia and 76.72% for Phocis) and MUFA/
PUFA ratio (8.01% for Magnesia and 8.10% for Phocis) indicate the 
potent high oxidative stability of the VOOs from this cultivar. The 
volatile compounds profile from both regions was characterized 
by the high concentration of aldehydes, especially (E)-2-hexenal, 
a compound that provides the characteristic “green note” of olive 
oil. The determination of Spearman’s rho correlation coefficients 
between fatty acids and volatile compounds was performed 
separately for the two regions and eventually revealed various 
differences and similarities possibly associated with the enzymes 
responsible for the metabolism of fatty acids and the production 
of the volatile compounds by different metabolic routes. The 
application of PCA algorithm on FAs content was not very effective 
for the geographical separation of samples. However, a clear 
separation of VOOs was obtained based on the composition of 
the volatile compounds. The aldehydes (E)-2-pentenal, heptanal, 
(E)-2-hexenal, the alcohol 1-hexanol, and the sesquiterpene (E,E)-
α-farnesene had the highest contribution for the differentiation 
of VOOs according to geographical origin. The present research 
study highlights the unique characteristics of Greek olive oil and 
promotes the endeavors for its authentication.
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