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ARTICLE INFO ABSTRACT

Intrauterine exposures to environmental factors influence fetal brain development. 
During early development of fetal brain, billions of cells differentiate into neurons and 
form connections. Synaptic activity affects the strength and number of synapses that 
form between neurons. The intrauterine environment plays an essential role in the 
mechanisms of fetal brain development and injury. Various intrauterine insults that 
impact the process of brain development, including genetic, traumatic, infectious, 
maternal stress, and environmental etiologies, can result in abnormal development 
or neurological injuries. Perinatal brain injury can cause lifetime neurologic disability. 
Understanding of the relationship between the intrauterine environment and fetal 
brain development remains limited and is needed to shed light on effective strategies to 
predict and prevent the risk of brain injury during intrauterine fetal development. This 
review focuses on intrauterine exposure to various environmental factors, their impact 
on brain development, and resultant brain injury among premature and term infants.
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Introduction 

Human prenatal brain development after fertilization is usually 
classified into four periods: 0–7 gestational weeks (GW) and 
neuronal proliferation during 8–15 GW, 16–25 GW, and > 26 GW 
[1]. In humans, neurons are mostly produced in the first trimester 
of gestation. The rapid development of the fetus’s cerebral cortex 
from the day of fertilization occurs for a period lasting from 8 
to 15 weeks, and by 16 weeks, the number of neurons in the 
cerebral cortex reaches the adult level [2,3]. Abnormal brain 
growth may result from an unsuitable intrauterine environment. 
Adverse intrauterine environments that may have a negative 
effect on the fetal brain include maternal diabetes, undernutrition, 
infection, hypoxia, stress, alcohol, smoking, toxins, and anemia; 
hypertensive disorders in pregnancy; high-altitude pregnancies; 
and placental insufficiency. These adverse environmental factors 
may trigger epigenetic alteration and have a significant impact 
on fetal brain development through genome-wide changes of 
epigenetic regulation. The common epigenetic modifications  

 
include acetylation of histone and methylation of DNA, in addition 
to non-coding RNA epigenetic regulations [4,5] and chromatin 
modification [6,7], which are vulnerable to the maternal 
environment [8]. The purpose of this review is to summarize 
articles on the deleterious effects of some types of intrauterine 
exposure on fetal brain development and brain injury. The hope is 
to provide the impetus for further studies to delineate the function 
of the intrauterine environment on fetal brain development, 
through evidence from premature and term infants, as well as the 
role of the intrauterine environment in lifelong brain injuries and 
the pathologic mechanisms by which these injuries occur.

Fetal Brain Development

Synapse Development: Synapses connect billions of neurons 
during intrauterine fetal brain development, which is important 
in all functional neuronal circuits [9]. Synaptic plasticity is 
characterized by the removal and insertion of amino-3-hydroxy-
5-methy1-4-isoxazolepropinic receptors (AMPARs) into the 
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postsynaptic membrane, and by the shrinkage or enlargement 
of dendritic spines, where the majority of excitatory synapses 
are positioned [9,10]. Synapse formation exceeds elimination, 
leading to a surplus of immature excitatory synapses during 
early brain development. Subsequently, synapse elimination and 
destabilization diminish the number of synapses, thus refining 
neural circuits that generate cognition and behavior [11]. Cell 
surface receptors such as metabotropic glutamate receptors 
(mGluRs), NMDA-type glutamate receptors (NMDARs), and tyrosine 
kinase (TRK) receptors activate mTOR signaling through the AKT 
pathway and the phosphoinositide-3 (PI3K) pathway, and MAPK 
via the ERK pathway. The ERK/MAPK pathway plays a key role in 
synaptic plasticity, consolidation of memory, and the transition from 
pluripotent stem cells to neuronal progenitors [12]. The myocyte 
enhancer factor (MEF2) family of transcription factors can regulate 
synapse elimination during brain development [13,14]. Synaptic 
strength is mainly influenced by changes in synaptic structure 
that depend on instruction of local protein synthesis, structural 
remodeling of the cytoskeleton, and receptor signaling [15,16]. 
Glutamate serves as both as a key neuromodulator to control 
synape and cirruit function and the mammalian brain’s primary 
excitatory neurotransmitter over a wide range of temporal scales 
and spatial.The group metabotropic GluRs (mGluRs) are abundant 
at excitatory synapses throughout the brain, where they are 
speculated sited to adjust to glutamatergic signaling [17]. They are 
vital to synaptogenesis and the shape of neural circuitry during the 
period of brain development [17]. Some evidence has demonstrated 
the important function of signaling lipids in mediating signal 
transduction and membrane traffic at pre-and post-synapses. For 
example, phosphoinositides can conduct ion channels, regulate 
exocytosis and endocytosis of synaptic vesicles and postsynaptic 
receptors, and signal from activated neuroreceptors such as 
NMDARs and mGluRs to allow plastic adjusted function of synapse 
[18,19].

Oligodendroglial Cells: Oligodendroglial cells in the central 
nervous system (CNS) synthesize myelin, transform from 
progenitor to the mature oligodendrocyte, and play a key role 
in salutatory conduction of action potentials [20-22]. After 20 
GW, oligodendrocyte progenitor cells (OPCs) are shaped in the 
ventricular zone [23]. OPCs are generated in the brain and spinal 
cord from multipotent stem cells, and then they proliferate and 
differentiate. Neurogenesis and oligodendrogliogenesis progress 
at different rates in the human brain. OPCs first emerge in the 
ganglionic eminence at approximately 9 GW in pregnant women 
[24,25]. In humans, cortical oligodendrogenesis begins at around 
10 GW, but it progresses well into adulthood [26]. Olig2-positive 
stem cells from early fetal development exist in the germinal matrix 
of the brain and transfer from the original regions in the brain to 
the axon-dense zones of the neocortex, spinal cord, diencephalon, 
and brainstem. 

Gliogenesis: Gliogenesis is often generated during the last 
trimester of gestation in humans [27]. As mentioned above, the 
timing of an insult in pregnancy is critical to compare and estimate 
the neurodevelopmental response of offspring. While early insult 
in pregnancy is related to structural brain abnormalities such 
as neural tube defects, late-gestation insults may disturb the 
migration progression of postmitotic neurons and cause deviant 
cortical development [28]. Later insults have been demonstrated to 
be associated with more with behavioral, cognitive, and psychiatric 
disorders, such as autism, obsessive compulsive disorders, 
and schizophrenia [29,30]. The regulation of oligodendrocyte 
differentiation and myelination in the fetal brain involves negative 
and positive regulators [23]. There are three negative regulatory 
pathways for oligodendrocyte differentiation, including the BMP 
signaling, Notch signaling, and Wnt/β-catenin pathways. These and 
Wnt pathways are involved in oligodendrocyte maturation. Some 
studies showed that white matter disorders are associated with 
dysregulation of the BMP and Wnt/β-catenin signaling pathways 
[31,32]. The maturation of oligodendrocytes relies on ATP through 
oxidative phosphorylation in mitochondria [33]. Mitochondria 
support oligodendrocyte differentiation and survival [34]. It is 
commonly found that after hypoxia-ischemia, mitochondrial 
dysfunction occurs in the developing brain [35]. Studies have 
demonstrated that microglia have an effect on the maturation of 
oligodendrocytes during normal brain development. Activated 
microglia discharge high levels of pro-inflammatory cytokines, 
including interleukin (IL)-1β, IL-2, and IL-17; tumor necrosis 
factor-alpha (TNFα); and excitotoxic factors such as glutamate, 
nitric oxide, and hyaluronan, or endothelial growth factor, which 
impair immature oligodendrocyte differentiation and proliferation 
and assist in decreasing the number of oligodendrocytes [36-
39]. Mitochondria are very important in the developing brain 
and throughout life in energy phosphate tasks such as regulating 
the cellular redox state, maintaining organelle function, cellular 
proliferation, mediating the DNA or protein responsible for 
transcription, excitotoxic injury, translation and assembly of 
the enzyme complexes of the respiratory chain, and apoptosis. 
These mitochondrial functions in cellular proliferation rely on 
mitochondrial dynamics. Mitochondria are extremely plastic and 
mobile, altering their shape through fission and fusion to reach 
sites of high energy demand in cells [40]. Mitochondrial impairment 
results in deregulation of calcium homeostasis, bioenergetic failure, 
mitochondrial permeabilization with release of proapoptotic 
proteins, and production of reactive oxygen species (ROS), leading 
to cell death [41].

Myelination: The myelination of mature oligodendrocytes 
continues especially in late gestation and is susceptible to 
excitotoxic and damage associated with premature exposure to 
the extrauterine environment without neuroprotection. Neonatal 
or fetal brain injury may occur as a result of thrombosis, infection, 
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hemorrhage, trauma, or hypoxia and can lead to lifelong cognitive, 
sensory, or motor dysfunction. Defining the type and range of brain 
damage is not as simple as it would seem. Magnetic resonance 
imaging (which requires dangerous ionizing radiation) and 
transcranial ultrasound (which has limited sensitivity) can only be 
used to examine the damaged fetal brain, not to predict function.

Placenta and Fetal Brain Development: The placenta is the 
maternal-fetal interface that has an essential role in the transfer 
of nutrients and oxygen to the fetus and provides and secretes 
growth-regulating factors to ensure the neurodevelopment of fetal 
brain. In addition, the placenta functions as an immuno-defender 
to protect the fetus from maternal infection and inflammation. 
The placenta, which controls the intrauterine environment, is of 
fetomaternal organ. It is well-known to secrete neurotransmitters, 
which are associated with abnormal neurodevelopment and normal 
fetal brain development. The maternal component of the placenta 
is the decidua. The fetal placental tissues include the umbilical 
cord, chorionic villi, amniotic membrane, and chorionic membrane 
[42,43]. Placental metabolism, placental hormone production, and 
substrate transport are all essential for fetal development. Normal 
development of the placenta includes two concurrent and complex 
processes: the cytotrophoblast (CT) cells invade the endothelium of 
the maternal spiral artery and then the fetal vascular tree develops. 
Endothelial cell invasion initially leads to the formation of a 
trophoblast “plug,” resulting in a hypoxic milieu environment within 
the intervillous space (oxygen partial pressure [PaO2] < 20 mm Hg) 
[44]. After 10 GW, the CT plug dissipates, which results in increased 
placental blood flow and PaO2 [45,46]. Several mechanisms affect 
placental function. The sustained high-pressure flow through the 
intervillous space (2–3 m/s, while normal dilated vessels are 10 cm 
/s) leads to increased shear stress and damage to the trophoblast 
cells of the chorionic villus, thereby damaging the capacity of the villi 
for nutrient and gas exchange [46,47]. Unsuccessful spiral arterial 
conversion makes these vessels prone to adrenergic stimulation 
and vasoconstriction, which leads to intervillous PaO2 fluctuations 
and placental hypoxic perfusion injury [48]. Dysregulation of 
angiogenesis and anti-angiogenic factors in the placental interface 
results in abnormal development of the fetal vascular tree in the 
placenta [49], subsequently impairing the function of the placenta, 
and has been relevant in the development of preeclampsia, 
gestational diabetes-related pregnancy, fetal growth restriction 
(FGR), placenta early exfoliation, intrapartum fetal compromise 
(IFC), and preterm birth [50-52].

 Risk factors of arterial disruption involve trauma, preeclamptic 
arteriopathy, uterine rupture, abruption placenta, and vasoactive 
drugs, such as nicotine or cocaine. Marginal retroplacental 
hemorrhages mostly occur at the margin of venous drainage of the 
placenta [53,54]. Many other events, such as malnutrition, genetic 
abnormalities, and infection can also disturb placental function and 

alter the fetal brain’s environment. The failure function of placenta 
can directly injure the developing brain or raise its vulnerability to 
injury, result in lasting neurological disabilities [55,56].

Fetal Brain Injury

Intrauterine Fetal Brain Injury: Chorioamnionitis, hypoxia, 
fetal inflammatory response, and preterm birth can contribute 
to brain injury and progression of the subsequent neurological 
deficits [57]. Hypoxia and inflammation mediate neuropathology, 
acting to induce neuroinflammation and breakdown of the blood 
brain barrier (BBB), resulting in oligodendrocyte cell damage 
[58]. The activated immune cells such as mast cells, microglia, and 
neutrophils release the key cytokines IL-1α, IL-1β, IL-6, and IL-
18, which sequentially stimulate the discharge of TNF, ROS, and 
excitatory amino acid agonists, including glutamate, which work 
together to initiate neural cell apoptosis [59,60]. The substances 
above can also directly influence the differentiation of neurons 
and OPCs by inducing apoptosis and can cause mitochondrial 
failure [61,62]. Neighboring reactive astrocytes, by releasing TNF-α 
and IL-1β, cause proliferative inhibition of oligodendrocytes and 
downstream activation of apoptotic pathways [63]. 

Impact of Intrauterine Infection: Many microorganisms, 
which include certain viruses, bacteria, and protozoa, have been 
linked to intrauterine infection. These infections can result in 
clinical syndromes, including TORCH infections, referring to 
infections caused by toxoplasma, other microorganisms, rubella 
virus, cytomegalovirus (CMV), and herpes simplex viruses (HSV) 
[64]. Other common infections in women are caused by aerobes, 
such as group B streptococcus (GBS) (15%); and gram-negative 
rods, including Escherichia coli (8%), anaerobes, including 
Bacteroides sp. (30%) and Gardnerella vaginalis (25%) [65]. 
These microorganisms are associated with preterm birth [66]. 
Further studies demonstrated that a persistent intrauterine 
inflammatory exposure may also result in fetal brain injury [67]. 
The characterization of chorioamnionitis is an intra-amniotic 
infection in which bacteria invaded the amniotic cavity, resulting 
in acute inflammation of the fetal membranes and/or the placenta 
[65]. Chorioamnionitis, which results in spontaneous preterm 
birth and premature rupture of membranes (PROM), is defined 
as a feto-placental environment of acute inflammation [68]. 
Chorioamnionitis often leads to fetal inflammation and damage to 
the immature brain, raising the possibility of diffuse white matter 
injury and intraventricular hemorrhage [69]. Fetal inflammatory 
response syndrome (FIRS), resulting from systemic immune 
activation, is characterized as inflammation of multiple fetal 
organs in utero [70]. Infections can trigger inflammatory pathways, 
causing the discharge of diverse proinflammatory biomarkers, such 
as interleukins, cytokines, and other molecules. Proinflammatory 
cytokines such as IL-1β, IL-6, and tumor necrosis factor-alpha 
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(TNF-α) from microglia and astrocytes may directly insult neurons 
and oligodendrocytes. The injection of IL-1β in neonatal rats leads 
to delayed myelination and neuronal death [71]. TNF-α induces 
apoptosis in developing oligodendrocytes and cell death in mature 
oligodendrocytes [72].

Toxoplasma: Primary infection of congenital toxoplasmosis in 
pregnant women is uncommon, but it remains as a latent, chronic, 
cryptic brain infection throughout the life of the host, often with 
severe consequences [73]. Some studies have demonstrated 
that infection of the toxoplasma may alter cognitive functions 
and human behavior and may cause headaches, the onset of 
schizophrenia, and cryptogenic epilepsy [74]. Chronic, adult-
acquired Toxoplasma gondii infection in outbred mice can cause 
behavioral and neurologic abnormalities secondary to the loss of 
brain parenchyma and inflammation [74]. There is also improved 
expression of message for synaptic remodeling and markers of 
neuronal cell death and mediators of inflammation in brains 
of chronically infected mice, comparing to uninfected control 
mice [74]. Synaptic transmission underlies vastly complicated 
instruction by protein networks assembled at the presynaptic 
location of neurotransmitter discharge and the postsynaptic 
device for neurotransmitter reception. Haroon and colleagues have 
indentified that T. gondii–-activated cytokines disturb synaptic 
signaling [75]. Chronic T. gondii infection brings dissimilar changes 
in synaptic protein composition, which downregulate a huge 
number of proteins occupied in synaptic plasticity and pose a 
danger for neuropsychiatric disorders [75].

Rubella: During the Rubella epidemic in the U.S, in 1964-1965, 
thousands of infants were infected and subsequently suffered 
lifelong problems. During this epidemic, 8–13% of cases were 
congenital rubella syndrome (CRS) occurring in early pregnancy. 
Rubella virus has a particular affinity for the central nervous system, 
resulting in mental retardation, encephalitis, cataracts, central 
auditory imperceptions, glaucoma, and cochlear atrophy [76]. Fetal 
damage associated with rubella is inclined to occur only when an 
infection occurs in the first 16 weeks of pregnancy. In general, the 
earlier the infection begins, the more severe the malformation that 
is observed [77]. The later sequelae of rubella in early pregnancy 
include diabetes and autism [78-81]. 

Cytomegalovirus: Human cytomegalovirus (HCMV) infection 
is the main cause of congenital viral infection and brain disease in 
developed countries. HCMV is also a major pathogen in congenital 
illness and can lead to permanent disabilities, including hearing 
loss, mental retardation, and vision loss. It was reported that 50% 
of children with congenital HCMV infection in Japan developed 
hearing loss 6 months after their diagnoses [82]. HCMV in fibroblasts 
acquires its covering by budding into exosome-like vesicles, which 
subsequently combine with the plasma membrane to discharge 

mature virions from the cell. Compared to the infected cells, the 
glycerophospholipid component of HCMV virions is strikingly 
different. The liposome of virions has been found to be similar to 
that of synaptic vesicles via comparing Monica the published results 
[83]. These similarities showed that HCMV in fibroblasts obtains 
its envelope by budding into vesicles, which can fuse at the plasma 
membrane to discharge mature versions of this cell. Synaptosomal-
associated protein of 25 kDa (SNAP-25), a constituent of the SNARE 
complex, which mediates exocytosis of synaptic vesicles in exocrine 
cells and neurons, has been found to be involved in the exit of HSV-1 
from neurons [83,84].

Herpes Simplex Viruses: The rate of neonatal herpes simplex 
virus (HSV) infection ranges from 1 in 2,500 to 1 in 20,000 live 
births. Manifestations of congenital HSV include hydranencephaly, 
chorioretinitis, skin lesions, scars, and microcephaly. The condition 
of neonates who have HSV infection can deteriorate rapidly 
due to encephalitis, disseminated intravascular coagulopathy, 
shock, or respiratory distress. Infants who survive neonatal HSV 
encephalitis have high rates of neurological sequelae, including 
mental retardation, visual or motor deficits, Alzheimer’s disease 
(AD), and seizure disorders [85]. HSV-1–infected neurons also 
have shown considerably reduced expression of the presynaptic 
proteins synaptophysin and syanpsin-1 and depressed synaptic 
transmission. In mice, these effects rely on intraneuronal 
accumulation of Aβ and GSK-3 activation [86].

Bacterial Infection: Group B Streptococcus and E. Coli: GBS is 
the leading reason for congenital bacterial infection in developed 
nations. The incidence of transmission to newborns in GBS-positive 
women is about 21% [87]. No direct evidence has shown that 
GBS infection plays a function in cerebral palsy (CP), but nearly 
50% of infants who survive GBS meningitis experience long-
term neurodevelopmental sequelae [88]. In addition, mediation 
of extensive cortical neuronal injury through reactive oxygen 
intermediates was observed in GBS-infected neonatal rats [89]. 
The association of cellular response of the fetal brain with perinatal 
inflammatory or infectious damage reflects activation of astrocytes 
and microglia with oligodendrocyte dysfunction and neuronal 
loss. In developing countries, E. coli is one of the major pathogens 
leading to early-onset infections in preterm neonates. In human 
newborn infants, cerebral white matter injury has been observed 
by MRI following an episode of E. coli meningitis [90]. 

Hypoxic-Ischemic Injury

Unpredictable and severe events that involve placental 
abruption, cord prolapse, uterine rupture, or eclampsia are 
strongly associated with a high risk of catastrophic fetal hypoxia 
[91]. Hypoxic-ischemic injury that leads to mental retardation, 
motor impairment (CP), hypoxic ischemic encephalopathy (HIE), 
and seizures is a considerable contributor to morbidity and 
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mortality in infants [92]. The fetal brain of prematurity before 32 
GW is immature, and the white matter is especially susceptible 
[93]. The susceptibility of the immature CNS to hypoxia-ischemia 
is mainly dependent on regional status and the timing of decisive 
developmental processes, for example, proliferation, differentiation, 
migration, programmed cell death, and myelination, as well as on the 
instruction of metabolism and cerebral blood flow. The fetal brain 
is hypersensitive to hypoxic damage and oxidative stress because 
of its high oxygen consumption, lack of glucose stores, high lipid 
content [94,95], and considerably low concentrations and activity of 
antioxidant enzymes [96,97]. The upregulation of IL-1 and TNF-R1 
can result from periods of hypoxia in the brain. Pro-inflammatory 
cytokines mediate the immune response to inflammation and 
infection and influence a wide range of physiological action that 
involves cell survival, fever, acute-phase response gene expression, 
glial activation, hypotension, T- and B-lymphocyte stimulation, and 
leukopenia [98-101]. Hypoxia, which damages OPCs by activating 
the enzymes caspase-3 and caspase-9, leading to cell death, is also 
related to calcium influx after inflammation-induced glutamate 
discharge from immune cells, which causes excitotoxicity and 
results in bax translocation to the mitochondria on OPCs and 
release of cytochrome-c [102]. The exact mechanisms underlying 
hypoxic cerebral damage are multifarious and are not totally 
mediated by the initial hypoxic injury, but instead are compounded 
by insults happening during the reperfusion stage [103] because 
of toxicity from ROS and activation of N-methyl-D-aspartate-type 
glutamate receptors [104]. In fact, the severity of the secondary 
injury happening during the reperfusion phase associates best 
with the severity of neurodevelopmental disability at 1 and 4 
years of age [105]. There is a strong connection between hypoxia 
and hypotension with fetal injury, mainly fetal death and neuronal 
damage. During hypoxia, the blood flow of cerebral hemispheres is 
reduced, whereas perfusion to the thalamus, brainstem, and basal 
ganglia is increased [106]. Cerebral ischemia has a dramatic and 
rapid effect on synaptic function and structure [107].

Seizures

Seizures are one of the most common neurological emergencies 
in newborns. A reduction in the normal environment of fetal 
neurosteroids is associated with undesirable outcomes, such 
as episodes of potentially destructive seizures, which can cause 
destructive and permanent conversion in neurodevelopment 
[108,109]. Premature birth is related to an increased rate of seizure 
disorders [110]. Neonatal seizures create a long-term increase in 
seizure susceptibility and change in inhibition/excitation balance of 
synaptic transmission in layer II/III neurons of the somatosensory 
cortex [111]. In summary, neonatal seizures have enduring effects 
on synaptic plasticity in the somatosensory cortex [112].

Cerebral Palsy 

CP is defined as a disorder of posture and movement 
that includes abnormalities in reflexes, tone, movement, and 
coordination, and delays or aberration in primitive reflexes and 
in motor milestone achievement that is enduring, and is caused 
by a lesion, nonprogressive interference, immature brain, or 
abnormality of the developing fetal and infant brain [113,114]. CP 
is also defined by type (dyskinetic, dystonic, or spastic), topography 
(limb involvement), and descriptors of the extent and pattern of 
involvement (quadriplegia, hemiplegia, diplegia, and monoplegia) 
[114]. Autopsy of the brain of a preterm child with CP showed white 
matter atrophy, dysmyelination, ventriculomegaly, and reactive 
gliosis [115].

Autism Spectrum Disorders 

Autism spectrum disorders (ASDs) are characterized by 
a complex and strong genetic component with broad familial 
inheritance patterns and have been found to be related to 
mutations in as many as 1,000 genes [116]. Environmental factors, 
including maternal diabetes, prenatal infections, prenatal and 
perinatal stress, zinc deficiency, and toxins, can also contribute to 
the risk of autism during early life [117,118]. Some evidence shows 
that the placenta plays a key role in ASD pathogenesis [119]. That 
the architecture of placenta from ASD patients consists of smaller 
branch angles than in population-based counterparts, fewer branch 
points, better extension to the surface boundary, and thicker and 
less tortuous arteries may indicate that both environmental 
and genetic factors have an impact on vascular branching 
morphogenesis in pregnant women [120,121]. A recent study of the 
placenta from patients with ASD demonstrated considerably higher 
incidences of fetal inflammation, maternal vascular mal-perfusion, 
and acute generalized inflammation, suggesting that these 
conditions are deleterious to fetal brain development [119]. Some 
forms of intellectual disabilities and syndromic autism are linked 
to mutations in genes that regulate protein synthesis and influence 
transmission, plasticity, and structure of synapses [12]. Failures 
to sustain RNA-binding protein levels and the accurate number of 
mRNA molecules are critical access points of synaptopathies [122].

Schizophrenia

Schizophrenia is a greatly polygenic disorder, involving 
hundreds of genes. Genes implicated in synaptic plasticity and 
glutamatergic function figure prominently among genes associated 
with schizophrenia [123]. A deficit in glutamatergic synapses can 
provoke schizophrenia [124]. Both neurochemical alterations and 
structural changes may lead to defective neuronal transmission 
in schizophrenia [123]. The uterine environment may have a 
significant influence on later development of schizophrenia 
[125-127]. Influenza infection during early gestation that has 
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a strong correlation with schizophrenia in offspring can result 
in overexpression of tumor necrosis factor-α (TNF-α) and IL-6, 
probably through changing either epigenetic modification or gene 
expression [128]. Schizophrenia has been associated with exposure 
that may happen in early life and might be linked to pregnancy 
(hyperglycemic conditions, hemorrhage, or preeclampsia), labor 
(uterine rupture, birth asphyxia), or fetal conditions (genetic 
anomalies or intrauterine growth restriction) [56,129].

Stress Or Mood Disorders

Many maternal stressors such as trauma, depression, and 
malnutrition can have an effect on the placenta and change maternal 
glucocorticoid levels, which play a major role in programmed cell 
death and neuronal maturation and to which the developing brain 
is extremely susceptible [130]. 11βHSD2 is expressed at very high 
levels in the placenta, which protects the fetus from the normal 
increase in maternal cortisol occurring during gestation. Maternal 
mood disorders have a relationship with disruption of the placental 
barrier, in part through suppressing 11βHSD2 expression, resulting 
in abnormal neurodevelopment in the offspring [131]. Human 
placental lactogen expression was considerably decreased in 
placentas from women diagnosed with depression and who had 
high depression scores [131].

Premature Birth and Fetal Brain Development 

Preterm And Fetal Brain Development: Steroid precursors 
generate from the placenta that maintain the neuroprotective and 
trophic functions of neuroactive steroids in the fetal brain [132]. 
In preterm birth, the loss of neuroactive steroid precursors leads 
to disruption of the normal track of fetal brain development and 
delays the progress of myelination [133]. The GABAA receptors 
that play a key role in late gestation are vital to interaction with the 
placenta-derived neuroactive steroids [134,135]. Research studies 
showed that tobacco smoke during pregnancy may result in chronic 
hypoxia and be associated with increased placenta resistance 
and carboxyhemoglobin and decreased uterine blood flow [136]. 
Some scientists have also found the connection between elevated 
levels of serotonin and altered oligodendrocyte development 
and myelination [137]. Recent studies showed that extracellular 
vehicles (EVs) including proteins, nucleic acids, and lipids are a 
mechanism for communication between fetus and mother [138]. 
How EVs influence the maternal response to pregnancy and fetal 
development is currently an area of vigorous exploration [139,140]. 

Premature Birth and Neurodevelopmental Disorders: 
Preterm birth can result from maternal/fetal inflammatory 
responses and intrauterine infection and result in fetal brain 
damage with a negative effect on the function and structure of 
the entire brain [141]. Serial MRI examinations have shown 
that the gray and white matter volume of premature infants is 

reduced compared to full-term control groups [142,143]. Loss of 
neurons as a result of apoptosis may partly explain the reduction 
in gray matter volume of the basal ganglia and cortex in both 
humans and mice. This loss of neurons is the most common form 
of cerebral abnormalities in premature infants, which include 
hippocampus and gray matter abnormalities and diffuse white 
matter injury [144,145]. However, focal necrotic lesions of cystic 
ventricular leukocyte softening are seldom seen in preterm infants 
[146]. Prematurity can also result in CP and visual and hearing 
impairments [147]. The common forms of white matter injuries in 
preterm birth occur as diffuse white matter injury, periventriclular 
leukomalacia (PVL), and germinal matrix hemorrhage [148]. The 
less frequent forms of injury are cerebral sinus vein thrombosis, 
primary intraparenchymal hemorrhage, hyperbilirubinemia-
induced kernicterus, and infectious meningitis/encephalitis [149]. 
PVL lesions have been demonstrated that have a relationship with 
the loss of pre-oligodendrocytes and OPCs [150].

Prospective: Extracellular vesicles provide a promising 
strategy for early prediction of intrauterine brain development 
EVs, including microvesicles and exosomes, participate in signal 
transmission between neurons, play a fundamental role in activity 
of the nervous system, and facilitate communication of the CNS 
with all body systems [151]. EVs may be produced in almost all cells 
of the body, function to transport biologically active molecules to 
target cells, and provide intercellular communications [152,153]. 
EVs are secreted by numerous cell types in the brain, including 
microglia, astrocytes, oligodendrocytes, and neurons [154-158]. 
Neuronal communications with glial cells are mediated via EVs 
by the transport of mRNAs, miRNAs, and proteins, where vesicles’ 
discharge into the extracellular space is taken up through recipient 
cells [154,159-161]. Synaptic pruning was performed through 
neuronal EVs via neuron-specific signal transduction between 
microglia and neurons; it was not improved via non-neuronal 
EVs [162]. Some evidence indicates that synaptic dysfunction is 
an essential role in the pathophysiology of neurodegenerative 
disorders. Exosomal miRNAs have also been demonstrated to 
play a latently neuroprotective function in subsequent ischemic 
brain injury. Exosomes from multipotent mesenchymal stem cells 
(MSCs) mediate miR-133b transfer to neurons and astrocytes, 
which modify gene expression in charge of functional recovery and 
neurite remodeling after stroke [163]. EVs provide an apparatus 
of communication not only between glial cells and nerves, but also 
permitting the interconnection of the CNS with all body systems 
[151,164]. The pathology of neurodegenerative disorders is a result 
of intercellular spreading and aggregation of proteins in the brain 
[165]. In recent years, the decrease of EV production through an 
nSMase-ceramide pathway resulted in the alleviation of AD in a 
mouse model of this disease [166]. α-synuclein of the Parkinson’s 
disease gene encapsulated in neuron-derived EVs is present not 
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only in the membranes, but also in the extracellular space of EVs 
and are secreted from neurons [167,168].

Conclusion
This review has addressed the dysregulated synaptic function 

and plasticity, receptors, molecular signaling cascades, and spine 
architecture that underlie cognitive deficits and the behaviors 
associated with other forms of syndromic ASDs. Synapse dysfunction 
is linked to the pathophysiology of diverse neurodevelopmental 
disorders such as intellectual disability, schizophrenia, and autism 
[12,169]. EVs are membrane-bound nanoparticles discharged into 
the extracellular space through most types of cells. Many CNS cells 
can release EVs, including exosomes, which may play a key role in 
the spread of pathogenic agents in various diseases. EVs have been 
studied extensively in pathologies including neurodegenerative 
disorders, such as prion protein in prion diseases, α-synuclein 
protein in Parkinson’s disease, tau and amyloid-β peptide in 
AD, mutant huntingtin in Huntington’s disease, and superoxide 
dismutase-1 and transactive response DNA-binding protein 43 kDa 
(TDP-43) in amyotrophic lateral sclerosis [166,170-175]. MSCs 
show homing abilities, which make it possible for them to travel to 
sites of inflammation or brain injury and to be used in treatments 
of various neurological disorders [176]. It may be difficult for 
clinicians to detect subtle injuries in the fetal brain. With the 
recognition of novel vesicle biomarkers, we hopefully will develop 
the ability to use EVs as a tool in clinical practice for treatment of 
nervous system diseases in the future.
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