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Introduction
The use of deep learning for medical analysis becomes the 

first methodology of choice for automated medical image analysis 
[1]. Deep learning allows for patterns to be recognised from data 
without any human input, with the resulting recognised information 
potentially being so abstract that it be insurmountably difficult for 
humans to manually construct features for them [2]. It creates 
such complex representations of data through many multiple 
layers of abstraction that have brought many breakthroughs to 
a multitude of fields over recent years [3]. Optical Coherence 
Tomography (OCT) retinal imaging is a non-invasive technology in 
which high-resolution cross-sectional images of retinal tissue are 
acquired, allowing for in-depth assessment and identification of 
abnormalities. This analysis requires the skill of a trained medical 
professional, who would ex- amine the images and make judgments 
on the features that they see present. This is naturally subject to  

 
observer error, along with this it is also very much a subjective 
area and consequently often has inter-observer variability [4], 
potentially culminating in misdiagnosis which can be detrimental 
to a patient’s eyesight. 

The segmentation of fluid in OCT images is the process of 
extracting the regions of cystoid macular edema in OCT B-scans. 
This fluid can be in all shapes and sizes and in many different 
locations within the retina, often with hairline boundaries 
separating individual fluid pockets making them particularly 
challenging to segment accurately. The current issues that face 
other algorithms in this domain are that many have primarily 
focused on hand crafting features to assist their deep learning 
networks with detecting fluid in challenging regions of high noise 
or distortion, or even ignoring poor quality images completely 
which happen to be very common in the OCT domain. Along with 
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this, approaches have often had to make use of extra techniques to 
group regions of fluid together as convolutions typically only take 
a small region around a pixel into account when classifying, thus 
resulting in erroneous classifications. Also, there is a lack of publicly 
available data sets, which was discussed in great detail by Trucco et 
al [5]. The main contributions are a deep learning approach to fully 
segment the regions of fluid in 2D OCT B-scan images, an approach 
for calculating the volume of fluid contained within a series of OCT 
scans, a dataset that is to be made publicly available, and a complete 
system that semi-automates the labelling process of OCT images.

Datasets
There were two datasets used for evaluating the performance 

of each of the proposed implementations. These datasets come 
from different sources, with one being a publicly available dataset 
and the other privately acquired. The public dataset that was 
used was acquired from [6] this dataset was also used by Roy, et 
al. [7] for their creation of ReLayNet. The dataset consists of 110 
images from 10 different patients, with each image labelled by 
two professionals; Experts 1 and 2. A primary concern with this 
dataset is that the labels produced by each of these professionals 
vary drastically, with an inter-rater Dice coefficient of only 0.57. It 
was therefore chosen that the labels from Expert 1 were utilised 
for training and the labels from Expert 2 were kept for validation 
purposes. Due to the small size of this dataset, it was also opted 
for a 50:50 train/testing split, meaning that both the training and 
testing sets consisted of 5 patients each, allowing for a fair test. 
Secondly, a smaller testing dataset was acquired that was manually 
labelled by an ophthalmologist in his free times using the web-
based tool that was provided. The dataset consists of 54 images 
that aim to test the network on images that were selectively chosen 
to be particularly challenging undertakings. This was due to a 
combination of a significant amount of image noise being present 
and the fluid regions producing boundaries that are difficult to 
distinguish with the naked eye. This dataset will be available based 
on requests from authors.

Methods
The popular deep learning semantic segmentation encoder-

decoder network UNet [8] was used as the foundation of our project 
network. This network consists of a series of convolutional layers 
evaluating features that are gradually downsampled to 1/16th the 
size of the original input, before being progressively upsampled 
back to the original input size, concatenating each upsampling layer 
with the corresponding encoder stage in order to produce a final 
segmentation map.

a) Testing Environment: Preliminary testing of the theories 
was performed using the aforementioned publicly available dataset 
from Chiu, et al. [6] used by Roy, et al. [8] training each permutation 
of the network on the training set and monitoring the results 
achieved on the testing set. For the preliminary training sessions, 
the network was trained using 256x512 images with a learning rate 
of 1e-5 and the Adam Optimiser, [9] with the goal of minimising 
the inverse of the Dice coefficient [10] as the loss function and 
only saving the network that yields the best performance results. 
The Dice coefficient was used for the loss function, as there was a 
significant class imbalance in the labels. After experimenting with 
varying batch sizes, batches of 5 images were found to be the best 
performance for the network training, as small-batch training has 
been shown to provide improved generalisation performance and 
allows a significantly smaller memory footprint, which might also 
be exploited to improve machine throughput [11]. After training 
each to convergence, a network’s performance was then evaluated 
by its respective Dice coefficients against the labels from both 
experts.

b) Atrous Convolutions: Atrous convolutions facilitate a 
larger receptive field being used without a loss of coverage. [12] 
The output y[i] of an atrous convolu- tion of an input signal x[i] with 
a filter w[k] is considered.
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The rate of r is the value that controls the stride at which the 
input signal is sampled. These were a potentially useful addition to 
the Encoder module due to the fact that the fluid tends to form in 
grouped regions, so consequently, in order to classify a given pixel as 
belonging to a region of fluid, it is not only useful to simply observe 
immediately neighbouring pixels but also extend the analysis to 
include a wider domain. However, due to the computationally 
expensive nature of larger convolution kernels, the integration of 
atrous convolutions seemed a viable alternative [13]. In order to 
achieve this, the appropriate atrous rates for each of the layers of the 
DenseASPP module needed to be calculated based on the resolution 
of the features that it operates on. The receptive field size, RF, of an 
individual atrous convolutional layer with rate, r and kernel size, K, 
needed to be calculated. This can be determined using the following 
equation,

[ ] ( ) ( )1 * 1ht RF r k k= − − +  (2)

It needed to be taken into consideration when stacking multiple 
(N) convolutional kernels, as it is done in a pyramid structured 
module (such as DenseA- SPP), with kernel size, K, the calculation 
differs slightly. This meant that the resulting overall receptive field 
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of this atrous convolutional pyramid stack can be calculated as 
follows,

 
[ ] ( )1 2 1ht RF k k N= + − −

 (3)

In order to test the DenseASPP module being placed at different 
layers of the encoder architecture, the 2nd convolutional operation 
in a given layer was replaced with the DenseASPP module and 
subsequent layers of the encoder would be re- moved. This meant 
that the dense features would be used as a final consolidation 

step within the encoder and the network would always begin the 
upsampling operations using the immediate output of this dense 
module. After analysing the results shown in (Table 1), it became 
clear that introducing the DenseASPP mod- ule at the 3rd layer 
of the encoder provided the best trade-off between speed and 
segmentation performance. This was considered to be the case 
because it had a much lower inference time than UNet whilst still 
being able to offer very promising results on both the testing and 
validation sets.

Table 1: Results of Dense ASPP module integration at different encoder layers, with Dice coefficient scores of both Experts, E1 and 
E2.

Encoder Layer Fluid Dice (E1) Fluid Dice (E2) Inference Time (s)

No DenseASPP 0.79 0.757 2.08

2 0.768 0.726 0.94

3 0.799 0.783 1.41

4 0.797 0.778 1.84

c) Attention Gates: Wang, et al. [14] used an Attention 
Gate to supplement a standard ASPP module, inspired by Chen, et 
al. [15] They utilised multiplicative attention along with a global 
sigmoid activation function to highlight the relevant activations in 
their feature maps. Whilst this approach is more computationally 
effective, it can be considered less accurate than the additive 
attention approach [16]. Therefore, we chose to integrate an 
additive Attention Gate in a similar fashion via combining it instead 
with the DenseASPP module that has already proven itself to be 
effective in the earlier tests. During these aforementioned tests, 
it was deduced that the best performing implementation was to 
include the DenseASPP module in a 3rd level encoder, as this offered 
a trade-off between the input to the module being of a sufficient 

resolution and also it was being deep enough within the encoder 
that it would be working on a feature- rich input. 

The output of both initial convolutional operations, followed 
by the DenseASPP operations is then utilised as inputs to the 
Attention Gate, with the subsequent attention gate’s output being 
concatenated with the 1st convolution. This improved the results, 
as it achieved Dice coefficients of 0.804 and 0.784 on the testing 
sets from Expert 1 and 2. However, the inference time did somewhat 
suffer, as this now had taken 1.83 seconds per image. Despite this 
sacrifice in speed, the performance improvements were promising, 
and the network remained 12% faster than UNet. Our final network 
architecture shown in (Figure 1).

Figure 1: Our final network architecture.

d) Volumetric Estimation: The volumetric estimation 
algorithm aimed to calculate the overall fluid volume content in 
a scan. This figure will be an additional quantitative measure for 
the medical professional. The automated estimation was achieved 
by running the deep learning algorithm over each individual 2D 

OCT scan, subsequently stacking these results together using the 
scanning distance to compile a representation of the data in a 3D 
space. Individual segmented fluid pockets which are the output 
of our proposed network converted to binary maps which used 
to calculate all of the connected components as each of these 
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components was a potential candidate to be a region of fluid; see 
(Figure 2). The area of each of these potential candidates was 
calculated utilizing the green formula [17]. These calculated areas 

were used to filter the potential candidates through the application 
of a minimum area threshold to remove potential erroneous 
estimations that could be attributed to noise. 

Figure 2: Examples of fluid segmentation performed by the network.
(a) Original Image
(b) Fluid Segmentation.

The remaining connected components and their corresponding 
areas were consequently considered to be individual representative 
shapes that encapsulate each of the detected fluid regions. These 
shapes provided all of the necessary information regarding the 
boundaries of the fluid that were present in a B-Scan and therefore 
facilitated the further analysis of each of the potential fluid pockets. 
The overall volume of a 3D object was then estimated by the sum of 
the areas of each of the B-Scans, multiplied by the scan distance that 
was used to acquire the scans.

Semi-Automated Labelling System

It became apparent that there was a severe lack of dataset 
that was publicly available for research, causing many issues for 
the development of a system to estimate fluid volume. This can 
partially be attributed to the time-consuming nature of the labelling 
process, as each of the individual biomarkers that can be present in 

a scan has the potential to vary drastically in size and are typically 
abnormal in shape, making them challenging to label accurately 
and consistently. In order to address this, we created a system that 
utilised our network to create a semi-automated labelling system. 
In order for this to be a usable system in a real-world environment, 
the complexities of the algorithm needed to be abstracted away 
ensuring that the system can facilitate faster dataset production. 
This was achieved through creating a GUI that allows the user to 
upload their own sets of images and subsequently be presented 
with labels overlaying each of them, with these labels having been 
generated automatically using the deep learning network; see 
(Figure 3). The user is then able to add their own labels or tweak 
and adjust the boundaries of the automatically generated labels in 
order to correct any errors that the system may have made. Finally, 
the user is able to save the results to a local directory, thus building 
their own labelled datasets for future.

Figure 3: The home screen of the labelling system (left) and an example of the labelling process using the system (right).
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Results
(Table 2) shows the results of training various network 

architectures using a 50:50 train/test set split. This table 
demonstrates that the network architecture that has been created 
was able to outperform the implementation of UNet and ReLayNet 
across both metrics. This network was able to achieve a 2.2% increase 
with respect to the Dice Coefficient and a 29.8% improvement on 
inference time, relative to UNet, thus achieving the original goal of 
being a performant network with respect to segmentation whilst 

also being useful for environments where there is less computing 
power available. Cross Validation The dataset from Chiu, et al. 
[6] was divided patient wise; so, K-fold cross validation [18] was 
applied using the data from both experts as separate ground 
truths on which to validate the network’s performance. The Dice 
coefficient was again utilised as the metric for analysing. A K value 
of 5 was used, meaning that each permutation of the network was 
trained with the scans from 8 patients (88 images), with 2 patients 
(22 images) being held out for testing each time.

Table 2: Results of the new network implementation when compared to that of ReLayNet [14] and UNet [13].

Network Dice (L1) Dice (L2) Inference Time (s)

ReLayNet 0.77 N/A N/A

UNet 0.79 0.757 2.08

Proposed Network 0.804 0.784 1.83

Each of these folds was trained with a learning rate of 1e-5 and 
a batch size of 4 until convergence of the network. The results of 
the K-fold tests utilising the labels from Expert 1 and Expert 2 as 
ground truth can be seen in column 2 and in column 3 respectively 
in (Table 3). These results show a high overall mean Dice coefficient, 
and the standard deviation demonstrates that there was a strong 
level of consistency across the results. This also shows that the 
network was able to perform consistently well given a small 
amount of training data for each of these tests. The various results 

of the two experts emphasise. Finally, the network was tested using 
the dataset that was acquired from Sunderland Eye Infirmary. 
However as previously alluded to, due to this dataset being even 
smaller than the other, transfer learning [19] was used to utilise the 
weights from the network that was trained on the previous dataset. 
In this instance, K-fold cross validation was used with a K value of 6, 
meaning that each network was trained with 45 images and tested 
with 9 for each of the sessions. For these tests, a learning rate of 1e- 
4 was used and the networks were again trained to convergence. 

Table 3: K-Fold cross validation results on the dataset from Chiu, et al. [2] labelled by Expert 1 and Expert 2.

Test Set, i (Patient Volumes) Fluid Dice Coefficient, dci (Expert 1) Fluid Dice Coefficient, dci (Expert 2)

1 (1, 2) 0.8 0.708

2 (3, 4) 0.742 0.73

3 (5, 6) 0.728 0.628

4 (7, 8) 0.847 0.863

5 (9, 10) 0.785 0.706

Mean, X  (Standard Deviation, σ) 0.780 (0.043) 0.727 (0.076)

As seen in (Table 4), the results achieved are again positive 
overall, especially when it is considered that there was a very 
small number of training images available each time and the 
images on which the network has been evaluated had been 
deliberately handpicked as being challenging to segment. The tests 
can be considered to have been successful overall as the network 
achieved a mean fluid Dice coefficient value of 0.678 overall, with 
a good degree of consistency. amongst the scores, despite all of 
these hurdles presented. There were however some variations 
to be seen within these results across some of the K-folds. These 
inconsistencies can potentially be related to the fact that images 
contain very densely packed fluid regions with many intricate 
hairline boundaries delineating them. These conditions create a 
challenging environment for segmentation algorithms and can 
consequently negatively impact the score that is achieved.

Table 4: K-Fold cross validation results on the dataset from 
Sunderland Eye Infirmary.

Test Set, i Fluid Dice Coefficient, dci

1 0.637

2 0.709

3 0.761

4 0.601

5 0.656

6 0.707

Mean, X  (Standard Deviation, σ) 0.679 (0.053)

Discussion
We have presented 4 main contributions to the field of 

automated OCT analysis; a deep learning approach to fully segment 
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the regions of fluid in 2D OCT B-scan images, an approach for 
estimating the volume of fluid content within a series of OCT scans, 
a dataset that is to be made publicly available and a complete 
system that semi automates the labelling process of OCT images. 
The deep learning created fundamentally utilizes a core encoder-
decoder architecture, however, this has been built upon through 
first integrating a Dense ASPP module for larger receptive field 
analysis and then through the addition of Attention Gates for 
filtering irrelevant activation to refine the segmentation output. 
This combination has proven effective as it was able to segment 
OCT images to a high standard whilst remaining computationally 
feasible with lower-end hardware. Our volumetric estimation 
algorithm was proven to be able to corroborate the opinion of an 
expert, thus indicating its usefulness in a real-world environment. 
Whilst fully labelled OCT volumes would have been useful for 
analyzing the performance of this algorithm. 

Restricted access to data became a prevalent issue throughout 
the research that we have undertaken and was restricting in terms 
of being able to both develop the system and test it extensively. 
This further reiterates the points raised by Trucco, et al. [17] 
as the development of the system required more access to data 
representative of the challenges that are faced in real-world 
environments in order to produce the best results possible and 
for it also to be tested extensively. This issue became particularly 
prevalent when creating the algorithm to estimate overall fluid 
content in the volume, due to not having access to complete labelled 
patient volumes to validate the approach. To coincide with this, the 
manual labelling of retinal fluid is something that is very subjective 
and is therefore subject to differences of opinion between 
Ophthalmologists. This point was demonstrated by the labelling of 
the dataset provided by Chiu, et al. [6] having such a low interrater 
Dice coefficient score. This serves to reinforce the need for a robust, 
repeatable, and most importantly reliable solution to this problem 
to be implemented and used in clinics across the world as soon as 
possible. Therefore, we aimed to create a system that simplifies 
this process and offers more consistency between labels by semi-
automating the labelling by using our deep learning network.
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