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ARTICLE INFO ABSTRACT

Aging is a biological process during lifespan with accumulation of mutations and 
damages, lowering fitness of at older ages and increasing hazards to survival. Aging is the 
most important risk factor associated with many diseases, such as cardiovascular disease, 
cancer, type 2 diabetes, hypertension, and Alzheimer’s disease. It accounts for about 
two thirds of death world-wide, and an even higher rate of 90% in developed countries. 
Understanding the biological mechanism of aging will therefore lead to tremendous 
public health benefits. Epigenetic markers, which refers to changes to the genome that do 
not involve changes in DNA sequence, have gain popularity in recent research by building 
connections between genetic and environmental aging factors. These epigenetic markers, 
e.g., telomere length and DNA methylation, can lead to a pre-diction of biological age or 
acceleration of aging, which can be further related to age-related diseases. A long-term 
goal of this project is to build an effective prediction algorithm for biological age using 
epigenetic markers. As the first step, a literature review was conducted on public database 
for existing studies on telomere length and all-cause mortality to prove the concept. A 
total of 27 studies were found in the period of 2003-2019. A weighted z-score meta-
analysis was performed to assess the association be-tween leukocytes telomere length 
and all-cause mortality (p-value = 6.8E-14). A preliminary analysis of DNA methylation 
markers was also run with all-cause mortality as an alternative epigenetic marker. Results 
from 15 studies were combined using random-effect meta-analysis (p-value < 1E-308).
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Introduction
Aging is a biological process during lifespan with accumulation 

of mutations and damages, lowering fitness of at older ages and 
increasing hazards to survival [1]. Aging is the most important 
risk factor associated with many diseases, such as cardiovascular 
disease, cancer, type 2 diabetes, hypertension, and Alzheimer’s 
disease [2]. It accounts for about two thirds of death world-
wide, and an even higher rate of 90% in developed countries. 
Understanding the biological mechanism of aging will therefore 
lead to tremendous public health benefits. Aging process can be 
affected by both genetic and nongenetic factors. The nongenetic 
intervention on aging can be long-lasting, and potentially explained 
by epigenetic mechanisms. Epigenetics, which refers to changes 
to the genome that do not involve changes in DNA sequence, have 
gain popularity in recent research [3]. These epigenetic markers, 
e.g., telomere length and DNA methylation, can lead to a prediction 
of biological age or acceleration of aging, and age-related diseases  

 
[4]. Telomeres are repetitive noncoding DNA components located 
at the end of chromosomes to protect from degradation of coding 
sequences.

The telomeres shorten each time a cell divides because of the 
end replication problem, but also by oxidative stress, and lengthened 
by the enzyme telomerase and DNA exchange during mitosis [5,6]. 
Telomere attrition has been widely reported to be associated with 
increased morbidity and mortality of various age-related diseases 
[7]. DNA methylation is a process by which methyl groups are 
added to the DNA molecule. Methylation can change the activity 
of a DNA segment without changing the sequence [8,9]. Recently 
developed indices of cellular age based on DNA methylation data 
are being used to study factors that influence the rate of aging and 
the health correlates of these metrics of the epigenetic clock [10]. 
This paper uses meta-analysis to predict the relationship between 
two epigenetic markers, telomere length and DNA methylation, and 
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all-cause mortality [11]. The telomere length meta-analysis is based 
on a total of 27 studies from 2003-2019. The DNA methylation 
meta-analysis is based on a total of 15 studies from 2000-2019. 
Significant association were found between telomere length and 
DNA methylation and all-cause mortality, suggesting an important 
role of epigenetic markers and aging process.

Materials and Methods
The data for this project were from the PubMed database 

(https://www.ncbi.nlm.nih.gov/pubmed). Although mortality 
could be due to many causes, this study was limited to all-cause 
mortality. All-cause mortality does not correspond to death from a 
specific disease, but rather including many aging-related diseases, 
and can serve as a proxy to aging process [11]. The data for this 
project were primarily from a recent review published in 2018 [12], 
which included 23 studies meta-analyzed using a random-effect 
model. Four additional studies were found in 2018 and 2019 [13-
16]. One study (ESTHER) [14] was included in the previous meta-
analysis, but the new publication expanded telomere measures 
from 3,566 to 9,638 participants. Therefore, the initial ESTHER 
results were replaced with the latest samples. When carefully 
examining details of individual studies, heterogeneity was observed 
in telomere length measurement (quantitative polymerase chain 
reaction (qPCR) vs Southern blotting (SB)), coding of telomere 
length (e.g., continuous, tertiles, quartiles, quintiles), statistical 
model (e.g., logistic regression, cox regression, and Mann-Whitney 
U test), and confounder adjustment. The individual study results 
were not directly comparable, and a pooled estimate for the effect 
size was not feasible. 

In this analysis, a weighted z-score meta-analysis was used, 
which weighted the z-statistic from each individual study by 
their sample size (number of deaths). This method does not 
combine the effect size estimates but used z-statistic as measure 

of association strength between telomere length and all-cause 
mortality. A similar search was conducted on the PubMed database 
to search for publications on DNA methylation markers and all-
cause mortality, using the keywords “epigenetic” and “all-cause 
mortality”. A recent meta-analysis was found using 12 cohorts in 
a collaborative approach [17], where the involved research groups 
agreed to perform association tests between DNA methylation 
age and all-cause mortality using consistent modeling and share 
the results, either negative or positive. Three additional studies 
were carried out separately. Results from these 15 cohorts was 
combined using both fixed- and random-effect meta-analysis. 
Multiple formulas have been developed, based on different sets 
of methylation markers, to calculate “DNA methylation age”. It is 
typically compared to chronological age to obtain a measure of age 
acceleration. A formula derived by Horvath [18] was selected for 
the meta-analysis as much as possible (14 out of 15 cohorts). 

Data
We introduce telomere length data and DNA methylation data 

that are used in the study, respectively.

Telomore Length Data

A total of 27 studies were included in the meta-analysis that 
reported association results between telomere length and all-cause 
mortality. Summary characteristics of individual studies were 
shown in Table 1. Individual association results were included in 
Figure 1, except Igari, et al. [16], which only reported association 
p-value instead of estimated effect size (hazard ratio, HR). When 
effect sizes (HRs) and their 95% confidence intervals (CIs) were 
available, we first converted the HR and CI into natural log, and then 
calculated z-score as log(HR)/SE(HR), where the standard error 
(SE) was estimated from log-transformed CI. The p-value reported 
in Igari, et al. [16] was converted into z-score from the inverse-
quantile function of standard normal distribution.

Table 1: Telomere length data.

First Author Publication 
Year Study Population Country N N_Death Follow-up 

(Years)
TL Measurement 

(Cell Type) Covariates

Cawthon 2003 Utah population USA 143 101 18 PCR (leukocytes) age and sex

Martin-R 2005 Leiden85-plus St Netherlan 679 323 13 PCR (leukocytes) age

Bischoff 2006 LSADT, D1905CS, 
LDCS Denmark 812 412 7.5 SB (leukocytes) age and sex

Bakaysa 2007 Sweden Twin 
Registry Sweden 350 176 6.9 SB (leukocytes) age, sex, and genetic factors

Woo 2008
Hongkong 

community 
residents

China 2006 118 4 PCR (leukocytes) age and sex

Njajou 2009 Health ABC USA 3075 975 2 PCR (leukocytes) age, race, sex, and study site

Fitzpatrick 2011 Cardiovascular 
Health Study (CHS) USA 1136 468 6.1 SB (leukocytes)

age, sex, and race hypertension, 
diabetes (ADA), smoking status, 

history of coronary heart 
disease, stroke, congestive heart 
failure, C-reactive protein, and 

interleukin-6
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Houben 2011 Zutphen Elderly 
Study Netherlands 203 105 7 PCR (leukocytes)

age, smoking, alcohol use, 
BMI, education, marital status, 
physical activity, and history of 

chronic diseases

Honig 2012

Washington 
Heights-Inwood 

Community Aging 
Project (WHICAP)

USA 1983 863 9.3 PCR (leukocytes)
baseline age, sex, ethnic 

group, education, presence of 
apoliporotein E e4 alleles

Weischer 2012

Copenhagen 
City Heart Study, 

Copenhagen 
General Population 

Study

Denmark 19838 4342 NA PCR (leukocytes)

age, gender, education, 
cholesterol, triglycerides, high-
density lipoprotein chelesterol, 

C-reactive protein, use of 
lipid lowering therapy, BMI, 

hypertension, diabetes mellitus, 
smoking, heavy alcohol intake, 

and physical inactivity; in 
women, also adjusted for 

postmenopausal status and 
hormone replacement therapy

Bendix1 2014 MONICA1 Denmark 1763 544 28 PCR (leukocytes)
age, sex, smoking, alcohol 

consumption, BMI, physical 
activity

MONICA10 2126 559 17.5 PCR (leukocytes)

socioeconomic status, systolic 
blood pressure, diastolic 

blood pressure, cholesterol, 
cardiovascular disease, self-
rated health, marital status

Deelen 2014 Leiden Longevity 
Study (LLS) Netherlands 3175 857 7.56 PCR (leukocytes)

age, sex, population 
stratification, study-specific 
covariates, IGF-1/IGFBP3, 

CRP, IL-6, CMV infection and 
lymphocyte counts

Svensson 2014 MrOS Sweden 2744 556 6.0 PCR (leukocytes)

age, MrOS site, BMI(log-
transformed), quarter of 
physical activity, current 
smoking, hypertension, 

diabetes mellitus, serum CRP 
(log-transformed) and apoB/

ApoA1 ratio

Carty 2015 Women’s Health 
Initiative USA 2383 402 12.7–13.3 SB (leukocytes)

age, current smoking, BMI, 
diabetes status, geographic 

region, hypertensi ln(TRI) and 
eGFR

Glei, et al. 
(2015) 2015

2000Social 
Environment and 

Biomarkers of Aging 
Study

China 942 283 10.7 PCR (leukocytes)

sex, residence, %neutrophils, 
%eosinophils, %basophils, 
education, eduction ×(age-

54), smoking status, exercise 
frequency, driking status, 

leukocyte count, log(IL-6), CRP, 
sICAM-1, sE-selectin, BMI, BMI 

squared, HbA1c, HDL, pulse 
pressure, homocysteine, IGF-1

Rode 2015

Copenhagen 
City Heart Study, 

Copenhagen 
General Population 

Study

Denmark 64637 7607 7 PCR (leukocytes)

age, sex, BMI, systolic blood 
pressure, smoking status, 

tobacco consumption, alcohol 
consumption, physical activity, 

and cholesterol level

Marioni 2016 Lothian Birth 
Cohorts of 1921 UK 1334 415 6–11 PCR (leukocytes) age, sex, and Hannum age

Batsis 2018 NHANES1999-2002 USA 7827 1322 10 PCR (leukocytes)
age, race, education, smoking, 
diabetes mellitus, congestive 

heart failure

Dean 2017 HEALS, HEALS-E, 
BEST Bangladesh 1505 744 NA PCR (leukocytes)

age, sex, BMI, smoking, 
urinary arsenic concentration, 

education, land
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Loprinzi and 
Loenneke 2018 NHANES1999-2002 USA 6611 408 10 PCR (leukocytes) age, age squared, gender, race-

ethnic status, BMI

Mons 2017 NHS USA 8633 2149 18.4 PCR (leukocytes)

batch effect, age, sex (only 
for ESTHER), smoking status 

physical activity, alcohol 
consumption, and education

Wang 2018 GENDER Sweden 404 359 12.58 PCR (leukocytes) batch effect, age, sex, education, 
BMI

Wang 2018 SATSA Sweden 473 238 8.57 PCR (leukocytes) batch effect, age, sex, education, 
BMI, smoking

Wang 2018 TwinGene Sweden 10727 1805 0.42 PCR (leukocytes) batch effect, age, sex, education, 
BMI, smoking

Wang 2018 TwinGene_MZ Sweden 479 115 11.42 PCR (leukocytes) batch effect, age, sex, education, 
BMI, smoking

Pusceddu 2018 LURIC Germany 3316 995 9.9 PCR (leukocytes)

age, sex, LDL-C, HDL-C, 
log(Triglyceride), BMI, lipid 

lowering therapy, blood 
pressure, diabetes, smoking, 

CAD, log(hsCRP), eGFR

Yuan 2018 ULSAM Sweden 257 178 7.4+G6 PCR (leukocytes)

age, BMI, smoking, alcohol 
intake, physical activity, 
education, treatments of 

hypertension, type-2-diabetes, 
and dyslipidemia as well as 

self-reported type-2-diabetes, 
and previous diagnosis of 
cardiovascular disease or 

cancer

Schöttker 2018 ESTHER Germany 9638 2204+F6 14.3 PCR (leukocytes)

age, sex, body mass index, 
education, smoking behavior, 

physical activity, history of 
cancer, history of CVD, batch

Igari 2019 Takahata Japan 81 32 11 SB (leukocytes) Mann-Whitney U test

DNA Methylation Data

A total of 15 studies were included in the meta-analysis that 
reported association results between DNA methylation and all-
cause mortality. Summary characteristics of individual studies 
were shown in Table 2. There were a total of 16,939 participants 
with 3,634 deaths. Most of the studies were on whites, except 

two on blacks and one on Hispanic. Results from these 15 cohorts 
was combined using both fixed- and random-effect meta-analysis. 
Multiple formulas have been developed, based on different sets 
of methylation markers, to calculate “DNA methylation age”. It is 
typically compared to chronological age to obtain a measure of age 
acceleration. A formula derived by Horvath [18] was selected for 
the meta-analysis as much as possible (14 out of 15 cohorts).

Table 2: DNA methylation data.

Cohort Ethnic N N_Death Follow-up Age HR LL UL

WHI White 995 309 15.4 (14.0-16.4) 68 (65-72) 0.999 0.975 1.024

WHI Black 675 176 15.4 (13.7-16.5) 62 (57-67) 1.013 0.989 1.038

WHI Hispanic 431 78 15.2 (14.1-16.3) 61 (56-67) 1.204 0.968 1.083

LBC 1921 White 445 312 10.2 (6.2-12.9) 79 (78-79) 1.209 1.011 1.047

LBC 1936 White 919 106 7.5 (6.9-8.4) 69 (68-70) 1.011 0.984 1.038

NAS White 647 221 11.6 (8.6-12.9) 72 (68-77) 0.991 0.965 1.017

ARIC Black 2,768 1,075 20.3 (14.3-21.4) 57 (52-62) 1.012 0.999 1.026

FHS White 2,614 236 6.2 (5.6-6.9) 66 (60-73) 1.036 1.004 1.069

KORA White 1,257 42 4.4 (4.0-4.8) 61 (54-68) 1.003 0.931 1.081

InCHIANTI White 506 91 15.0 (14.6-15.5) 67 (57-73) 1.038 0.992 1.085

Rotterdam White 710 32 5.6 (5.3-5.8) 58 (54-62) 1.03 0.966 1.097

BLSA White 317 26 5.3 (4.0-6.6) 66 (58-73) 1.143 1.05 1.244

ESTHER White 1862 602 NA 62.5 (48-75) 1.23 1.1 1.38

Wolf White 241 17 3.42 (0.28-6.9) 52.6 (23-72) 1.13 1.01 1.26

JHS White 1747 281 NA NA 1.036 1.011 1.062
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Results
We report telomere length results and DNA methylation results, 

respectively.

Telomore Length Results

Twenty-six of the 27 studies reported estimated effect size as 
odds ratio or hazard ratio between reduced telomere length and 

all-cause mortality. Given heterogeneity among these studies, a 
pooled estimate did not have a direct interpretation. A forest plot 
(Figure 1) was generated to show individual association results, 
but only for demonstration purpose. A weighted z-score method 
was used for meta-analysis. A significant association was observed 
between telomere length and all-cause mortality (combined z = 
7.49, p = 6.75E-14).

Figure 1: Forest plot of telomere length and all-cause mortality.

We further restricted analysis into different ethnic groups. 
There were 23 studies conducted in European countries or United 
States. The combined z-score was 6.85 (p = 7.34E-12). Another 3 
studies were based on Eastern Asian population (specifically, China 
and Japan). Although the sample sizes were much smaller in these 
3 studies compared to many Europe- or US-based studies, their 

results still yielded a combined z-score of 3.56 (p-value = 0.0004). 
Therefore, the telomere length was significantly associated with 
all-cause mortality in both of the two ethnic groups. Although not 
appropriate due to the inconsistent effect size estimates, we still 
applied a funnel analysis to diagnosis potential publication bias, in 
which negative/insignificant findings would be less likely to publish. 
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The funnel plot (Figure 2) did not suggest any obvious publication 
bias, with most of the studies being inside of the confidence interval 
(the “funnel”).

Figure 2: Funnel plot for potential publication bias.

DNA Methylation Results

Figure 3: Forest Plot for DNA Methylation Age Acceleration 
and All-Cause Mortality.

Results from 15 independent cohorts (2014-2019) were 
combined first using fixed-effects meta-analysis. However, 
moderate heterogeneity has been observed among the results 
(Figure 3, heterogeneity test p-value = 0.022). A random-effect 
meta-analysis was therefore carried out to account for this 
heterogeneity. A combined effect size was estimated for 2.2% 
higher risk of death per 1-year age acceleration (DNA methylation 
age minus chronological age) (z-statistic = 153.3, p < 1E-308). As 
most of the studies (12 out 15) were conducted in a collaborative 
manner, where both negative and positive results were shared, 
significant publication bias was not expected. When we limited our 
analysis to whites only (12 studies), we still observed significant 
p-value for the heterogeneity test (p-value = 0.002). Random-effect 
meta-analysis gave an estimate of 2.1% higher risk per 1-year age 
acceleration (z-statistic = 109.6, p < 1E-308).

Conclusion and Discussion
In this project, we carried out an extensive literature review on 

epigenetic markers and ageing. Using a meta-analysis approach, 
we observed significant association between telomere length, a 
well-known epigenetic marker, and all-cause mortality as a proxy 
for ageing, from a total of 27 individual studies. Subgroup analysis 
also con-firmed the association in both European/US and Eastern 
Asian populations. Similar finding was observed between DNA 
methylation and mortality, using a meta-analysis of 15 individual 
cohorts. These suggest an important role of epigenetic markers and 
aging process. One limitation of the project was the lack of original 
data. Although meta-analysis is a power method to combine 
results from multiple studies, these results in our analysis were 
heterogeneous in terms of telomere length measurement (PCR vs 
SB), coding of variable (continuous vs categorical), and covariates 
controlled for, etc. We had to choose a less powerful statistical 
method (weighted z-score) instead of a random-/fixed-effects 
regression method to obtain robust results.

Besides telomere length, other epigenetic markers have also 
been reported for association with ageing. For example, Zhang, et al. 
identified significant association be-tween DNA methylation score 
and all-cause mortality. Schöttker, et al. [14] compared various 
epigenetic markers, including telomere length, DNA methylation 
predicted age, 8-isoprostane levels, and 25(OH)D levels, on their 
association with all-cause mortality. In their joint model of these 
epigenetic markers, telomere length showed significant association 
while DNA methylation predicted age did not. In contrast, Gao, et 
al. [19] showed significant association between DNA methylation 
age and all-cause mortality after controlling for telomere length. 
Because DNA methylation is prevalent on the DNA sequence with 
millions of methylation markers, it potentially provides a stronger 
prediction tool than telomere length for aging. DNA methylation 
data are also easily accessible through public databases, allowing 
more complicated modeling approaches than meta-analysis. My 
next step will focus on DNA methylation on its relationship with the 
ageing process.
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Future Work
In this preliminary analysis, we confirmed association 

between telomere length and all-cause mortality. It suggests the 
role of epigenetic markers in the ageing process. In future study, 
we will explore other epigenetic markers, e.g., DNA methylation, 
and develop an efficient prediction model for ageing and age 
acceleration using data mining tools.
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The data presented in this study are searched from https://

www.ncbi.nlm.nih.gov/pubmed and is available upon request to 
the author.
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