

The Zeid-G Family of Distributions

Clement Boateng Ampadu*

Department of Biostatistics, USA

*Corresponding author: Clement Boateng Ampadu, Department of Biostatistics, USA

ARTICLE INFO	Abstract
Received: 🕮 May 06, 2020	In this short communication, the class of Zeid-G statistical distributions are
Published: 🕮 May 14, 2020	introduced. A sub-model of this family is shown to be practically significant in fitting real-life data as well as simulated data. The researchers are asked to further develop

Citation: Clement Boateng Ampadu. The Zeid-G Family of Distributions. Biomed J Sci & Tech Res 27(4)-2020. BJSTR. MS.ID.004535. introduced. A sub-model of this family is shown to be practically significant in fitt real-life data as well as simulated data. The researchers are asked to further deve the properties and applications of this new class. **Keywords:** $1\Sigma\alpha$ PT-Gfamilyofdistributions, Chen-G, Carbon Fibers Data

Introduction to the New Family

Firstly, we recall the following

Definition 1.1: [1] Let $\alpha \neq \frac{1}{e}, \alpha > \frac{1}{e}$ and $\xi > 0$ where α is the rate scale parameter and ξ is a vector of parameters in the baseline distribution all of whose entries are positive. A random variable Z

is said to follow the $\left(\frac{1}{e}\right)^{\alpha}$ power transform family of distributions if the Cumulative Distribution Function (CDF) is given by

$$F(x;\alpha,\xi) = \frac{1 - e^{-\alpha G(\chi;\xi)}}{1 - e^{-\alpha}} x \in \mathbb{R},$$

where the baseline distribution has CDF $G(x;\xi)$.

Proposition 1.2: [1] The PDF of the $\left(\frac{1}{e}\right)^{\alpha}$ power transform family distribution is given by

$$f(x;\alpha,\xi) = \frac{1}{1 - e^{-\alpha}} \left(\alpha g(x,\xi) e^{-\alpha G(x,\xi)} \right)$$

where $\alpha \neq \frac{1}{e}, \alpha > \frac{1}{e}$ and $\xi > 0$ and $G(x; \xi)$ is the baseline cumulative distribution with

probability density function $g(x;\xi)$

Remark 1.3: The parameter space for α have been relaxed to $\alpha \in R, \alpha \neq 0$. The relaxation has been employed in several papers, and for example, see [2]

Using this relaxation, we introduce the following, inspired by the structure of the Chen-G CDF [3]

Definition 1.4: A random variable Y wil bel called a Zeid random variable, if the CDF is given by Zeid-G, that is,

$$F(x;\alpha,\beta,\xi) = \frac{1 - e^{-\alpha} \left\{1 - e^{-\beta G(\chi;\xi)}\right\}}{1 - e^{-\alpha \left\{1 - e^{-\beta}\right\}}} \chi \in Supp(G),$$

Where the baseline distribution has CDF $G(x;\xi),\xi$ is a vector of parameters in the baseline CDF whose support depends on the chosen baseline CDF. $\alpha, \beta \in \mathbb{R}$, and $\alpha, \beta \neq 0$

Practical Illustration

Assume the baseline distribution is Normal with the following CDF

$$G(x;c,d) = \frac{1}{2} \operatorname{ercf}\left(\frac{c-\chi}{\sqrt{2d}}\right)$$

where $x, c \in \mathbb{R}, d > 0$, and $erfc(z) = 1 - erf(z) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} dt$. It

follows from the Definition immediately above that we have the following

Proposition 2.1: The CDF of Zeid-Normal, for $x \in \mathbb{R}$, is given by

Copyright@ Clement Boateng Ampadu | Biomed J Sci & Tech Res | BJSTR. MS.ID.004535.

$$F(x;\alpha,\beta,c,d) = \frac{e^{\alpha \left(e^{-\frac{1}{2}\beta \operatorname{erf}\left(\frac{c-\chi}{\sqrt{2d}}\right)}\right)} - 1}{e^{\alpha \left(e^{-\beta-1}\right)} - 1}$$

where $\alpha, \beta \in \mathbb{R}, \alpha, \beta \neq 0, c \in \mathbb{R}, d > 0$, and

$$erfc(z) = 1 - erf(z) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} dt.$$

Remark 2.2: We write $J \sim ZN(\alpha, \beta, c, d)$, if J is a Zeid random variable with the above

CDF

The new distribution is a good fit to real life data as well as simulated data, as illustrated below [4] (Figures 1 & 2)

Figure 2: The pdf of ZN (-1.6156, -0.474565, 2.89578, 0.897577) (blue) fitted to the histogram of 10,000 random samples of ZN (-1.6156, -0.474565, 2.89578, 0.897577).

Concluding Remarks

In this paper, we introduced the Zeid-G family of distributions, and showed the Zeid-Normal distribution is a good fit to real life data as well as simulated data. We hope the researchers will further develop the properties and applications of the Zeid-G class of distributions.

References

 Anafo AY (2019) The New Alpha Power Transform: Properties and Applications, Master of Science in Mathematical Sciences Essay, African Institute for Mathematical Sciences (Ghana).

- Ampadu CB (2019) A New T-X Family of Distributions, Annal Biostat & Biomed Appli 3(1).
- 3. Lea Anzagra, Solomon Sarpong & Suleman Nasiru (2020) Chen-G class of distributions, Cogent Mathematics & Statistics.
- Alzaatreh A, Lee C, Famoye F (2014) T-normal family of distributions: A new approach to generalize the normal distribution. Journal of Statistical Distributions and Applications 1: 16.

ISSN: 2574-1241

DOI: 10.26717/BJSTR.2020.27.004535

Clement Boateng Ampadu. Biomed J Sci & Tech Res

This work is licensed under Creative Commons Attribution 4.0 License

Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us

- Global archiving of articles
- Immediate, unrestricted online access
- Rigorous Peer Review Process
- Authors Retain Copyrights
- Unique DOI for all articles

https://biomedres.us/