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ARTICLE INFO Abstract

Protein phosphorylation is a reversible post-translational modification that 
involves a series of sequence-specific kinases and occurs on specific residues such as 
serine, threonine, and tyrosine. The reversible phosphorylation of proteins regulates 
almost all aspects of the cell’s life cycle and abnormal phosphorylation is the cause 
or consequence of many diseases. Protein phosphorylation states can mediate 
protein complex formation and regulate protein function, which is important for cell 
physiology but can also promote neuropathic events. The tau protein is a very important 
microtubule-associated protein in the brain, occurring most commonly in neurons 
and glial cells. Its level of phosphorylation is associated with a variety of diseases of 
the central nervous system such as Alzheimer’s disease. Under normal circumstances, 
post-transcriptional tau phosphorylation is conducive to the stability of microtubules. 
However, hyperphosphorylation can lead to the deformation and aggregation of various 
types of cytoskeletal components of nerve tissue, causing them to lose normal function.

Abbreviations: MAPS: Microtubule-Associated Proteins; AD: Alzheimer’s Disease; 
MTRS: Mercuric Transport; SER: Serine; THR: Threonine; MT: Microtubule; GSK3β: 
Glycogen Synthase Kinase 3β; ALA: Alanine; PD: Projection Domain; MBD: Microtubule-
Binding Domain; PSP: Progressive Supranuclear Palsy; MAP1B: Microtubule Associated 
Protein 1B; GSK3: Glycogen Synthase Kinase 3; CDK5: Cyclin-Dependent Kinases 5; NFTs: 
Neurofibrillary Tangles; PHFs: Paired Helical Filaments; SFs: Straight Filaments; FTLD: 
Frontotemporal lobar degeneration; CJD: Creutzfeldt-Jakob Disease; PDPK: Proline-
Dependent Protein Kinase; UPS: Ubiquitin-Proteasome System; PHF: Pair of Helical 
Filaments; PTPs: Protein Tyrosine Phosphatases; PSPs: Protein Serine/Threonine 
Phosphatases; PP1: Phosphatase Types 1; PsP2A: phosphatase types2A; PP2B: 
Phosphatase Types2B; PP2C: Phosphatase Types2C; PP: Protein Phosphatase; CCH: 
Chronic Cerebral Hypoperfusion; BRET: Bioluminescent Resonance Energy Transfer; 
PKA: Protein Kinases A

Introduction

Cellular proteins that bind to microtubules are collectively 
referred to as microtubule-associated proteins (MAPs). Under 
normal circumstances, MAPs are essential components for 
Maintaining the Structure and function of microtubules. 
They can increase the stability of microtubules, promote 
microtubule assembly, and regulate the relationship between 
microtubules and other cellular components [1]. MAPs con 

 
tain two functional regions: an alkaline binding domain that 
binds to the side of the microtubule; and an acidic salient binding 
domain that is an outwardly protruding filamentous structure in 
the form of a horizontal bridge connecting the MAP to other cell 
components, cytoskeleton components, membranes, and other 
structures. MAPs have microtubule binding activity, and their 
function can be performed by regulating the phosphorylation and 
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dephosphorylation of specific amino acids.A variety of functions 
of MAPs involving the regulation of microtubule cytoskeletal 
dynamics have been discovered. MAPs are present in nerve 
tissue during neuronal development and play an indispensable 
role in microtubule remodeling during neuronal activity and in 
the stability of microtubules during neuronal maintenance. As a 
result, mutations in MAPs lead to neurodevelopmental disorders, 
psychiatric disorders, and neurodegenerative diseases. 

MAPs are post-translationally regulated by phosphorylation, 
which can affect microtubule affinity, cell localization, or the overall 
function of specific MAPs with a profound effect on neuronal 
health. The microtubule-binding activity of a MAP is regulated 
by the phosphorylation and dephosphorylation of specific amino 
acids. The MAP family mainly includes MAP1, MAP2, tau, and 
MAP4. The first three are found mainly in neurons, while MAP4 
exists in all kinds of cells. Of these four MAPs, the role of tau protein 
phosphorylation and dephosphorylation in Alzheimer’s Disease 
(AD) is the most extensively studied and significant progress has 
been made. The function of the microtubule-associated protein 
tau is to promote microtubule assembly and stabilization in 
neurons, which is required for axonal transport and neurite 
outgrowth [2]. Tau is a microtubule-associated phosphoprotein 
that is abundant in neurons and is regulated by protein kinases and 
protein phosphatases. Appropriately phosphorylated Tau binds 
to microtubules, thereby stimulating the assembly of tubulin into 
microtubules and maintaining microtubule stability [3]. In the brain 
of Alzheimer’s disease, tau is abnormally hyperphosphorylated; it 
contains three to four times more phosphate than normal tau [4]. 
In vitro and in vivo, hyperphosphorylation of tau has been shown 
to reduce the affinity of tau for microtubules, leading to disruption 
of neuronal cytoskeleton and axonal transport [5]. Abnormal 
aggregation of hyperphosphorylated tau protein is a common 
pathological feature of neurodevelopmental disorders commonly 
referred to as tauopathy, including AD, progressive supranuclear 
palsy and frontotemporal dementia [6]. Several neurodegenerative 
diseases, collectively referred to as tauopathy, are characterized by 
insoluble, highly phosphorylated tau that is a neuronal inclusion of 
straight or paired helical filaments [7].

Microtubules and the Effects of Tau Phosphorylation on 
Microtubule Structure

Neuronal development and function are influenced by the cyto-
skeletal infrastructure of cells, namely microtubules, actin, and in-
termediate filament networks. Microtubule cytoskeletal networks 
are organized into stable and dynamic arrays that provide struc-
tural support as molecular motion trajectories and serve as signal 
platforms during neuronal development and plasticity [8-10]. Mi-
crotubules are composed of alpha- and beta-tubulin heterodimers 
that assemble into protofilaments and then laterally contact each 

other to form tubules [11]. β-Tubulin must be in a GTP-bound state 
to allow the assembly of heterodimers onto the protofilament. Al-
pha-tubulin binds to β-tubulin but only β-tubulin can hydrolyze 
GTP. Once the protofilament is assembled, β-tubulin is exposed at 
the “plus end” and alpha-tubulin is exposed at the “minus end.” This 
structural polarity leads to a difference in the growth rate at each 
end and it has been observed that end-capping occurs more often 
[12] and is much faster on the plus end than on the minus end. Mi-
crotubules can be modified within cells by switching between as-
sembled and disassembled states in a process called dynamic in-
stability [13]. MAPs have the ability to bind to microtubule lattices, 
tubulin heterodimers, or both. They can thereby regulate the as-
sembly/disassembly kinetics of microtubules to properly organize 
and remodel microtubule cytoskeletal structure during neuronal 
development and activity [14,15]. 

The α- and β-tubulin heterodimers that assemble into micro-
tubules exist in a state of dynamic equilibrium with non-polymeric 
tubulin. The filamentous structure of microtubules forms intracel-
lular cytoskeletons in a variety of cells but are particularly enriched 
in neurons [16-18]. The dynamics of microtubule assembly can 
be regulated by temperature, microtubule protein modifications, 
small molecules such as paclitaxel, and some mercuric transport 
(MerT) interacting proteins [19-21]. Since microtubules play an 
important role in a wide range of biological functions, including the 
structural formation of neurons and the transport of intracellular 
substances, it is speculated that microtubule disruption (if any) 
can profoundly influence neuronal structure and function [22-24]. 
Tau protein has been identified as a factor that promotes microtu-
bule assembly and stability. Microtubule assembly is thought to be 
negatively regulated by tau protein phosphorylation. More than 40 
serine (Ser) and Threonine (Thr) residues have been identified as 
possible phosphorylation sites on the tau protein. Although the bio-
logical significance of every single phosphorylation site is not clear, 
it is known that phosphorylation of tau at Ser-262 of tau (in the 
441-residue tau protein) has a profound influence on its interaction 
with microtubules [25].

Effect of Tau Phosphorylation on the Structure of 
Threonine 231 

The amino acid sequence that interacts with MT in Tau is lo-
calized to a proline-rich region and a repeat domain. Tau contains 
85 potential phosphorylation sites, of which three sites S214, T231 
and S262 are critical for Tau-MT interaction. In tau, both unprimed 
and primed sites are phosphorylated by GSK3β, with Thr231 being 
the most notable primer epitope [26]. Although phosphorylation 
of S262 strongly reduced affinity for MT [27], phosphorylation of 
S214 [28] and T231 [29] primarily reduced Tau polymerization 
MTs. Ability [30] Phosphorylation of T231 not only regulates MT 
binding, but is also important for the role of Tau in disease [31] be-
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cause it separates tau from MTS, which may Interaction with an-
other cell partner [32]. Several kinases can phosphorylate Tau at 
T231, including glycogen synthase kinase 3β (GSK3β), one of the 
most important kinases involved in disease processes [33]. After 
initiation of phosphorylation at S235, GSK3β phosphorylates T231 
more efficiently [34], even though this initiation of phosphoryla-
tion is not required [33]. Tau deposits isolated from Alzheimer’s 
disease patients typically contain phosphorylated T231 and S235, 
as well as phosphorylated S237 and S238 [35]. Furthermore, the 
unprimed site on GSK3β-R96A phosphorylated tau was more po-
tent than wild-type GSK3β, clearly indicating the importance of 
priming site phosphorylation in regulating tau-microtubule inter-
actions [36]. Following this preliminary study, it was demonstrat-
ed that GSK3β-induced tau phosphorylation of Thr231 plays a key 
role in reducing tau binding and stabilizing microtubules [37]. In 
transfected cells, tau with Thr231 mutated to Ala was still able to 
efficiently bind to microtubules after phosphorylation with GSK3β 
[37]. These studies clearly show that although GSK3β phosphory-
lates many sites on tau, not all sites have an effect on tau function.

Structure and Phosphorylation of Tau Protein

Figure 1: Different isomers of tau formed by alternative 
splicing of mRNA in the normal adult brain. The tau 
protein consists of two large regions: the projection 
domain (PD) and the microtubule-binding domain (MBD). 
The six unique isomers are mainly differentiated by the 
number of N-terminal insertion sequences (0N, 1N, or 2N) 
and the number of microtubule binding repeats (3R or 4R) 
that they contain. In the normal adult brain, the ratio of the 
3R to 4R isomers is about 1:1.

The tau protein was identified in 1975 as a protein with the 
ability to induce microtubule formation [38,39]. It is the most 
widely occurring MAP in the normal brain and its primary func-
tion is to bind tubulin and promote its polymerization into mi-
crotubules [39]. It also combines with fully formed microtubules 
to maintain their stability [40], reduce the dissociation of tubulin 
molecules, and induce the formation of microtubule bundles. The 
tau gene is located on the long arm of chromosome 17 and has 79 
phosphorylation sites that can be modified by serine/threonine 

protein kinases [38]. In fact, the polymerization and stabilization of 
microtubules are mainly determined by the state of tau phosphor-
ylation. The phosphorylation of tau can be divided into two types 
depending on whether the modified residue is phosphorylated by a 
proline-directed kinase or a non-proline-directed kinase. Along the 
pathological course of many neurodegenerative diseases, tau pro-
tein is mainly (but not solely) phosphorylated by proline-directed 
protein kinases. In the central nervous system of a healthy human, 
alternate splicing of tau mRNA results in six different isoforms of 
the tau protein between 352–441 amino acids long with molecular 
weights of 48-67 kDa (Figure 1) [41-43]. The tau protein is subdi-
vided into four regions: the acidic region at the N-terminal portion, 
the proline-rich region, the microtubule-binding domain, and the 
C-terminal region. Of the 85 putative phosphorylation sites in the 
tau protein, 45 sites are serines, 35 are threonines, and 5 are tyro-
sines [44-46].

Serine phosphorylation on the KXGS motif of the microtu-
bule-binding domain reduces tau’s affinity for microtubules and 
thus prevents their binding [47-49]. The amount of tau protein 
phosphorylated at proline-rich sites like Thr-181, Ser-199, and 
Thr-231is higher in the brains of AD patients and these three phos-
phorylated forms of tau can therefore be used as biomarkers for 
AD [50-52]. Kinetic analysis showed that pseudophosphorylation 
increased the tau aggregation rate by increasing the filament nu-
cleation rate. In addition, it increases the tendency to aggregate 
by stabilizing mature filaments to prevent depolymerization. The 
covalently bound phosphate is distributed within the tau micro-
tubule-binding domain and adjacent to approximately 40 sites 
[45,53,54]. The occupancy of these sites may affect the tau aggre-
gation in two ways. First, the occupancy of certain loci regulates 
the affinity of tau-tubulin [55], promoting an increase in the level of 
free cytoplasmic tau available for nucleation and supporting aggre-
gation reactions [56-59]. Second, hyperphosphorylation directly 
increases the tendency of tau aggregation [60,61]. In addition, tau 
phosphorylation has been reported to reduce proteasome-mediat-
ed tau conversion in neuronal cell models [62]. Thus, the occupancy 
of certain tau phosphorylation sites can increase the free cytoplas-
mic tau concentration by a variety of mechanisms.

Tau phosphorylation and Neurological Diseases

Neurodegenerative diseases with abundant filamentous tau 
protein inclusion bodies are called tauopathies. Some neurodegen-
erative diseases differ from AD in that they lack the pathology of 
beta-amyloid plaques [63]. However, the tauopathies other than AD 
include chromosome 17-linked Parkinson’s disease with fronto-
temporal dementia, chronic traumatic encephalopathy, argicophilia 
granulosus, Progressive Supranuclear Palsy (PSP), corticobasal de-
generation, globular glia tauopathy, and Pick’s disease. Due to the 
abnormal accumulation of phosphorylated tau protein in neuronal 
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and glial cells in these neurodegenerative diseases, synaptic plas-
ticity of hippocampal neurons can be affected, and memory func-
tion seriously disrupted [64]. It has been reported that changes in 
protein phosphorylation affect axonal transport in neurodegenera-
tive disease models. For example, one study showed that as phos-
phorylation of neurofilament proteins and the microtubule-asso-
ciated protein MAP1B increased, their respective axonal transport 
rates decreased [65]. 

In contrast, another study revealed that the enhanced phos-
phorylation level of tau increased the overall slow rate of tau pro-
tein transport in neurons and that the inhibition of tau phosphory-
lation by GSK-3 decreased its motility (Figure 2). Due to these and 
other similar findings, axonal transport defects have been regarded 
one of the contributing factors to neurodegenerative disease [66]. 
(Figure 2) Tau and other microtubule-associated proteins are phos-
phorylated by glycogen synthase kinase 3 (GSK-3), as well as cy-
clin-dependent kinases (like CDK5) and activator subunit p25, to 
form highly phosphorylated tau proteins. This highly phosphory-
lated form of the protein then dissociates into helical filaments 
that eventually form neurofibrillary tangles (NFTs) AD is acknowl-
edged as the leading cause of dementia and is estimated to affect 
47 million people worldwide [67]. The disease is primarily char-
acterized by progressive cognitive and memory impairments. The 
neuropathological features of AD are (1) extensive cell death, (2) 
extracellular deposits of β-amyloid plaques (causing nephritis), 
and (3) synaptic aggregation of hyperphosphorylated tau protein 
also known as neurofibrillary tangles (NFTs) [68]. The analysis of 
the crystal structure of tau filaments in AD brains by Fitzpatrick et 
al. in 2017 showed that these pathological tau inclusions consist 
of paired helical filaments (PHFs) and straight filaments (SFs) [69-
71]. 

Figure 2: Tau and other microtubule-associated proteins 
are phosphorylated by glycogen synthase kinase 3 (GSK-
3), as well as cyclin-dependent kinases (like CDK5) and 
activator subunit p25, to form highly phosphorylated tau 
proteins. This highly phosphorylated form of the protein 
then dissociates into helical filaments that eventually form 
neurofibrillary tangles (NFTs).

Phosphorylation of tau enhances PHF formation. Phosphoryla-
tion can also be a physiologically feasible way to bring tau into a 
PHF-prone state. Phosphorylation can alter the conformation of tau, 
making it long and stiff [72]. Negative-stained electron microscopy 
showed that the core of the PHFs and SFs is composed of a double 
helix stack of C-shaped subunits [73] and successive steps along the 
β-strand of the protofilament are linked by helical symmetry. More-
over, the C-terminal region of tau is disordered, and it projects away 
from the core to form a fuzzy shell [74]. The protofilament cores of 
the PHFs and SFs are similar, indicating that they are ultrastructural 
polymorphs. The ultrastructural polymorphism between the PHF 
and SF is due to the difference in lateral contact between the two 
protofilaments. In the PHF, the two strands form exactly the same 
spiral symmetric structure, whereas in the SF, the protofilaments 
are asymmetric. In AD, tau is highly phosphorylated and many of 
the major kinases that phosphorylate the tau protein target glyco-
gen synthase kinase-3 (GSK-3)-targeted tau phosphorylation sites 
[75]. Another of the major kinases responsible for tau hyperphos-
phorylation is cyclin-dependent kinase 5 (CDK5), a member of the 
serine/threonine kinase family of cyclin-dependent kinases. 

Most AD neurons do not have normal microtubule structure but 
instead have pathological NFTs that are paired helical filaments of 
abnormal, hyperphosphorylated tau. Since tau pathology has been 
shown to be associated with neuronal loss, one of the treatment 
strategies targeting the molecular basis of AD includes inhibition 
of tau hyperphosphorylation [76]. To examine whether microtu-
bule destruction induces tau phosphorylation, et al. co-expressed 
tau protein with stathmin, a 19 kDa phosphoprotein that depolym-
erizes microtubules, in COS-7 cells. Stathmin expression induced 
microtubule mutations and hyperphosphorylation of tau at Thr-
181, Ser-202, and Thr-205, indicating that microtubule disruption 
induces subsequent tau phosphorylation [77]. Frontotemporal lo-
bar degeneration (FTLD) encompasses two clinical syndromes and 
three clinicopathological subtypes: the clinical syndromes are be-
havioral variant frontotemporal dementia and primary progressive 
aphasia, and the neuropathological subtypes are characterized by 
abnormal protein aggregation [64]. PSP is a rare, late-onset neuro-
degenerative disease whose clinical symptoms include early pos-
tural instability, vertical gaze palsy, and a later onset of dementia. 

From the ultrastructural perspective, the NFT filaments present 
in PSP are straight and contain only the 4R isoform of the tau pro-
tein [78]. Animal models have revealed that mutations in the tau 
gene led to sprouting in dentate gyrus granule cells of hippocam-
pal mossy fibers, and primary epilepsy is partially caused by muta-
tions in the Tau protein gene. The S169L mutation of the presenilin 
1 gene has also been found in patients with epileptic seizures and 
familial Alzheimer’s disease [79]. AD is the most common cause of 
dementia. It is a degenerative disease of the central nervous system 
and is mainly characterized by progressive cognitive impairment 

http://dx.doi.org/10.26717/BJSTR.2020.26.004393


Copyright@ Keping Chen | Biomed J Sci & Tech Res | BJSTR. MS.ID.004393.

Volume 26- Issue 4 DOI: 10.26717/BJSTR.2020.26.004393

20189

and memory impairment. The main pathological features of AD are 
senile plaques and neurofibrillary tangles. The core component of 
neurofibrillary tangles is the double-helical fibril formed by abnor-
mally modified Tau protein [80]. Creutzfeldt-Jakob disease (CJD) is 
a rare and fatal human neurodegenerative disease that belongs to 
family of diseases known as transferable spongiform encephalop-

athies or prion diseases. The cerebrospinal fluid level in patients 
with CJD is significantly higher than that of AD patients and other 
dementia patients [81] (Table 1). As detailed above, it is clear that 
tau protein is closely associated with many diseases of the central 
nervous system and clarifying its mechanism of action can lead to 
new targets of treatment for tau protein-related diseases.

Table 1: Classification and characteristics of diseases caused by tau phosphorylation.

Tau gene deficiency Type Pathological Features References

FTDP-17 Mutation of MAPT (tau gene)

Behavioral variant frontotemporal 
dementia and primary progressive 
aphasia, neuropathological subtype 
with abnormal protein aggregation.

[64]

PSP

Uncommon, late-onset 
neurodegenerative disease, tau 

protein accumulation in the basal 
ganglia, brainstem and cortex

Early posture instability, vertical 
gaze palsy, late-onset dementia. [79]

MFS S169L mutation of presenilin 1 
gene

Budding in the dentate gyrus 
granule cells of hippocampal mossy 

fibers
[79]

AD Degenerative disorder of the central 
nervous system

Senile plaques and nerve fiber 
tangles made of double helix fibrils 
containing abnormally modified tau 

protein.

[80]

CJD
Neurodegenerative disease 

that can transmit spongiform 
encephalopathy

Tau protein content in CSF is more 
than 2131pg/ml, which manifests 

as mental disability, ataxia, and 
myoclonus.

[81]

Phosphorylation Affects Axonal Transport and 
Degradation of the Tau protein

The phosphorylated form of the MAP tau accumulates in neuro-
fibrillary tangles in Alzheimer’s disease. To investigate the effect of 
specific phosphorylated tau residues on protein function, expressed 
wild-type or phosphorylated tau protein in cultured cells. Their 
results showed that enhanced phosphorylation of tau decreased 
its microtubule binding and increased the number of moving tau 
particles without affecting axon transport kinetics. Conversely, de-
creasing tau protein phosphorylation increased the amount of tau 
protein bound to microtubules and inhibited axonal transport of 
tau. To determine whether the removal of tau protein resulted in 
an increase in phosphorylated tau, autophagy in neurons was in-
hibited. This resulted in a 3-fold increase in phosphorylated tau 
compared to wild-type tau and endogenous tau was not affected. 
In autophagy-deficient mouse embryonic fibroblasts, the protea-
somal degradation of phosphorylated tau was also reduced com-
pared with wild-type tau. These findings indicate that while both 
autophagy and proteasome pathways are involved in tau degrada-
tion, autophagy appears to be the main pathway for the removal 
of phosphorylated tau in neurons. Therefore, defective autophagy 
may contribute to the pathological accumulation of phosphorylated 
tau in neurodegenerative diseases [82]. 

Tauopathies are characterized by the presence of insoluble tau 
protein. The interaction of tau with microtubules is mainly achieved 

by the microtubule-binding domain located at the C-terminal of tau. 
This domain contains either three or four binding repeats (depend-
ing on alternative splicing of tenth exons), resulting in a 3R or 4R 
tau protein isomer, respectively. However, tau also interacts with 
components of the plasma membrane through its N-terminal pro-
jection domain [83]. While we know that phosphorylation of tau 
reduces its ability to bind and stabilize microtubules, we have re-
cently found that the binding of tau to the plasma membrane is also 
regulated by phosphorylation [84]. It is well known that increased 
phosphorylation of tau reduces its affinity for microtubules, lead-
ing to instability of the neuronal cytoskeleton [85]. Phosphoryla-
tion specifically at Ser-262, Ser-293, Ser-324, and Ser-356, which 
are serines found in the KXGS sequences of R1, R2, R3, and R4 do-
mains, respectively, have been shown to reduce the binding of tau 
to microtubules. Phosphorylation of tau in proline-rich regions sur-
rounding Ser-202, Ser-235, Thr-231, and Ser-235 also contributes 
to the dissociation of tau from microtubules. However, phosphor-
ylation in proline-rich regions alone is not enough to completely 
dissociate tau from microtubules [29]. GSK3β is a key protein in the 
insulin signaling pathway that phosphorylates several residues on 
tau [77,86]. The most favorable tau phosphorylation sites for GSK-
3β are Ser-396, Ser-400, and Ser-404 [87]. 

Phosphorylation of Ser-262 has been reported to result in re-
duced microtubule binding of tau [48,88]. However, phosphoryla-
tion of Ser-262 induced only about 40% of the microtubule bind-
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ing activity [89], indicating that phosphorylation at other sites 
is necessary to completely inhibit its biological activity. The 21 
phosphorylation sites in PHF-tau have been identified by reactiv-
ity with antibody and protein sequencing technologies at various 
phosphorylation sites. Among them, 10 sites are on the Ser / Thr-
Pro motif and 11 are on the non-Ser / Thr-Pro motif [90,91]. Ser / 
Thr-Pro and non-Ser / Thr-Pro sites may be phosphorylated by pro-
line-dependent protein kinase (PDPK) and non-PDPK, respectively. 
In the non-proline-directed phosphorylation site of PHF-tau, both 
Ser-208 and Ser-210 are in the SR-motif range. 

In addition, in addition to the known GSK-3βphosphorylation 
site on tau, studies have identified a new phosphorylation site Thr-
175 and a non-prolineated phosphorylation site Ser-400. TTK is a 
non-proline-directed Ser / Thr kinase that has been purified from 
bovine brain [92]. It is the first tau kinase to phosphorylate Ser-
208 and Ser-210, both of which are PHE phosphate. Site. Thr-212 
is a neighboring residue close to Ser-208 in tau and is known to be 
the phosphorylation site of GSK-3β [93]. Absorption tests by pep-
tides pS208 and pS210 demonstrated the specificity of anti-pS208. 
Therefore, we can confirm that the phosphorylation site Ser-208 is 
a site separate from Thr-212. In addition to affecting its transport, 
tau phosphorylation also affects its ability to be degraded [94]. We 
studied the degradation of tau by the ubiquitin-proteasome system 
(UPS) and macroautophagy (autophagy) in the context of tau trans-
port. While the UPS eliminates transient proteins by tagging them 
with chains of ubiquitin, autophagy removes long-lived structural 
proteins, as well as damaged or misfolded proteins [95]. Autoph-
agy has also been shown to reduce both wild-type and modified 
tau proteins, including caspase-cleaved and C-terminally truncated 
species [96].

Tau protein hyperphosphorylation

Aberrant protein phosphorylation can lead to disease-related 
processes [97]. Accordingly, the abnormal phosphorylation of tau 
is observed in many neurodegenerative diseases. For example, 
histopathological investigations of AD showed extra-neuronal ac-
cumulation of β-amyloid peptide in plaques, neuronal aggregates 
of NFTs, and astrogliosis surrounding neurons [98]. Abnormal hy-
perphosphorylation of tau leads to aggregation, formation of NFTs, 
microtubule rupture, neuronal dysfunction, and death [99]. NFT 
consists of a pair of helical filaments (PHF), which in turn consists 
of a microtubule-associated protein tau in a hyperphosphorylated 
state [100]. In AD, the phosphorylation/dephosphorylation system 
appears to be greatly affected [101]. It has been shown that brain 
glucose uptake/metabolism in AD is impaired [102] and this dam-
age has been suggested to be associated with abnormal hyperphos-
phorylation of tau. This finding implicates astrocytes as a key factor, 
especially because changes in glucose uptake and/or glutamate up-
take (mediated by astrocytes) affect neuronal function and survival.

Through complex signal cascades, protein phosphorylation 
and dephosphorylation can regulate neuronal plasticity and neu-
rotransmission, consequently impairing learning and memory. The 
signal cascade is precisely controlled by the dynamic reversible 
process of phosphorylation that is dependent on a precise balance 
between protein kinase and protein phosphatase activity. Human 
genome sequencing predicts the existence of more than 500 kinas-
es and approximately 150 phosphatase genes. Protein kinases are 
subdivided into two families: serine/threonine kinases with 428 
members; and tyrosine kinases with 90 members [103,104]. Pro-
tein phosphatases are categorized into three different families: pro-
tein tyrosine phosphatases (PTPs) [105], protein serine/threonine 
phosphatases (PSPs) [106], and dual-specificity protein phospha-
tases (tyrosine and serine/threonine). Of the known phosphatases, 
about 107 are PTPs and about 40 are PSPs [107].

Recent data show that the enzyme phosphatase family plays an 
indispensable role in controlling neuronal function [108]. The pro-
tein serine threonine phosphatase represents a highly conserved 
multigene family in evolution [109]. Based on sequence homology 
and biochemical properties, known phosphatases can be divided 
into four interrelated families. The three families of the protein 
serine threonine phosphatase types 1, 2A and 2B (PP1, PP2A and 
PP2B) have significant primary amino acid sequence homology, re-
spectively. In contrast, phosphatase type 2C (PP2C) is more diverse. 
Among them, PP2A is a protein phosphatase that regulates the 
most phosphorylation of tau protein. Among the tau phosphatases 
identified in the human brain, PP2A accounts for more than 70% 
of tau dephosphorylation [110]. In the AD brain, PP2A activity was 
significantly reduced [111]. PP2A is a multimeric enzyme consist-
ing of a catalytic subunit (C) and two regulatory subunits (A subunit 
or B subunit). The physiological form of PP2A is considered to be a 
heterogeneous composition composed of A and C subunits. Trim-
er. The major natural form of PP2A is a heterotrimer in which the 
core enzyme binds to one of several regulatory subunits expressed 
in a cell- and tissue-specific manner [112]. Another potential func-
tion of PP2A in the brain is to regulate phosphorylation of microtu-
bule-associated protein (MAPS). 

The activity of protein phosphatase (PP) 2A is downregulated 
and promotes hyperphosphorylation of tau in the brain of Alzhei-
mer’s disease (AD). Studies have shown that calyculin A, a potent 
specific protein phosphatase (PP) 2A and PP1 inhibitor, is injected 
into both sides of the rat hippocampus, thereby replicating Alzhei-
mer’s-like defects in the dephosphorylation system. It was found 
that rats injected with calyculin A found spatial memory retention 
damage in the Morris water maze test. At the same time, tau was 
hyperphosphorylated at the Ser396 / Ser404 (PHF-1) and Ser-262 
/ Ser-356 (12E8) sites, as determined by immunohistochemistry 
and Western blotting. This suggests that PP2A is involved in the in 
vivo regulation of tau phosphorylation and that down-regulation of 
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this phosphatase will result in hyperphosphorylation of tau protein 
[113]. The hyperphosphorylation of the tau protein and the subse-
quent formation of NFTs are associated with abnormal activation of 
protein kinases [114]. 

In fact, studies have shown that the imbalance of kinase and 
phosphatase activity may play a causative role in the hyperphos-
phorylation of tau [102]. The proline-directed protein kinases that 
catalyze the phosphorylation of tau (such as GSK-3 and CDK5) pre-
dominantly do so at Ser-Pro and Thr-Pro sites on the tau protein, 
whereas the non-proline-directed protein kinases (such as protein 
kinase A, protein kinase C, calmodulin-dependent kinases, plas-
min-dependent kinases, and glucocorticoid-dependent kinases) 
primarily phosphorylate serine or threonine residues and do not 
require proline guidance. It has been demonstrated at the cellular, 
brain, and animal levels that phosphatases play an important role 
in protein degradation in neurons in diseases such as AD. Studies 
have reported that inhibiting protein phosphatase activity induced 
tau hyperphosphorylation and aggregation [115].

Drugs that Affect Tau Phosphorylation Patterns

Nimodipine Attenuates Phosphorylation of Tau at 
Ser-396: Nimodipine is an L-type calcium channel antagonist that 
reduces excessive calcium influx in pathological conditions [116] 
and shows neuroprotective effects. Nimodipine treatment was ini-
tially used due to its ability to produce vasodilation in smooth mus-
cle cells lined with blood vessels [117]. Chronic cerebral hypofusion 
(CCH) has been reported to promote hyperphosphorylation of the 
tau protein. It showed that nimodipine attenuated CCH-induced tau 
phosphorylation by up-regulating the expression of miR-132. In ad-
dition, nimodipine inhibited CCH-induced activation of GSK-3β and 
neuronal apoptosis. These findings support the role of nimodipine 
in inhibiting tau phosphorylation at Ser-396 via miR-132/GSK-3β 
and points to new potential drug target for the treatment of tauop-
athy in CCH by regulating the miR-132/GSK3β pathway [116].

Tamoxifen Inhibits CDK5 Kinase Activity and Reg-
ulates Tau Phosphorylation: CDK5 is a multifunctional en-
zyme that plays an important role in brain development. The cat-
alytic subunit of this kinase does not have enzymatic activity as a 
monomer but is activated by binding to activation subunits p35 or 
p39. These activation subunits are structurally related to cyclins, 
activators of cell cycle CDKs, but do not show homology with cy-
clins at the amino acid level. In contrast to other CDKs, activation 
of CDK5 does not require phosphorylation of the activation loop. 
Studies have shown that neurotoxicity induces proteolytic cleav-
age of the p35 subunit by calcium-regulated calpains [68]. In vitro 
experiments have shown that this proteolytic conversion of p35 
to p25 does not significantly alter the steady-state kinetics of tau 
phosphorylation by CDK5 [118]. The binding of CDK5 to p25, the 
N-terminally truncated proteolytic product, stabilizes CDK5 in the 

active dimer form and alters its substrate specificity.et al.identified 
tamoxifen from a large-scale bioluminescent resonance energy 
transfer (BRET)-based screen of small molecules that inhibit the 
interaction between CDK5 and p25. They showed that tamoxifen 
reduced tau phosphorylation by blocking the activation of CDK5 by 
p25 [118]. This finding paves the way for new therapies for tauop-
athies by harnessing the drug tamoxifen [118].

Rapamycin Reduces Tau Phosphorylation at Ser-214 
by Modulating cAMP-Dependent kinases: Mammalian 
target of rapamycin (mTOR) is a highly evolutionarily conserved 
serine/threonine kinase. mTOR is involved in regulating many cel-
lular processes such as autophagy, protein translation, ribosome 
biosynthesis, actin organization, mitochondrial oxygen consump-
tion, proliferation, and differentiation [119]. It is worth noting that 
mTOR acts as a linker to protein kinase signals, receiving inputs 
from many upstream signaling pathways and delivering various 
downstream kinases such as cAMP-dependent protein kinases (e.g. 
PKA), GSK-3β, and mitogen-activated protein kinases [120]. Since 
all these kinases are tau-associated kinases, whether rapamycin 
can modulate tau phosphorylation by regulating these kinases re-
mains to be determined. In human neuroblastoma SH-SY5Y cells, a 
cell model widely used for tau pathology studies, research indicat-
ed that rapamycin reduced the PKA-mediated phosphorylation of 
tau at Ser-214. Similar results were obtained in wild-type human 
embryonic kidney 293 (HEK293) cells that were stably transfect-
ed with the longest isoform of recombinant human tau (tau441; 
HEK293/tau441). Since Ser-214 is a site that blocks tau hyper-
phosphorylation [121], the inhibition of mTOR by rapamycin could 
indirectly prevent or reduce tau hyperphosphorylation. 

Research has focused on rapamycin-induced enhancement of 
autophagy, as autophagy mediates massive degradation of cyto-
plasmic content and thus enhances the clearance of hyperphos-
phorylated tau [122]. It is also thought that rapamycin may inhibit 
the synthesis of the tau protein. However, since autophagyinduced 
by rapamycin gives priority to the reduction of excessive phosphor-
ylated and insoluble tau and soluble tau is dispersed throughout 
the cell, it may not be easy to reduce tau levels by autophagic deg-
radation, and showed that rapamycin improved memory deficits in 
6-month-old 3xTg AD mice before accumulation of hyperphosphor-
ylated and insoluble tau was observed [123]. Similarly, another 
study using an AD mouse model showed that the protective effect 
of rapamycin was apparent only before insoluble tau accumulated 
in these animals [124]. These studies suggest that the protective 
effects of rapamycin may not be limited to autophagic clearance of 
hyperphosphorylated and insoluble tau.

Conclusion

As a major MAP, tau protein plays an important role in neurode-
generative diseases. AD is pathologically identified by the presence 
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of NFTs containing hyperphosphorylated tau protein. Glycosylation 
and ubiquitination also play a role in aberrant tau phosphoryla-
tion. Investigating the phosphorylation mechanisms of tau protein 
provides considerable insight into the progress of neurodegenera-
tive diseases and can provide a reasonable basis for early disease 
treatment. Tubulin is a very unstable protein that easily loses GTP/
GDP exchange efficiency at 37°C without the presence of GTP and 
protein-stabilizing compounds with multiple hydroxyl groups. 
Thus, decreased tubulin turnover and/or the reduced expression 
of factors required for tubulin maintenance may decrease the num-
ber of microtubules or tubulin level in normal aging neurons. In 
addition, in autophagy-deficient mouse embryonic fibroblasts, but 
not in neurons, proteasomal degradation of phosphorylated tau is 
reduced compared to wild-type tau. 

While autophagy and proteasome pathways are involved in 
tau degradation, autophagy appears to be the main pathway for 
the clearance of phosphorylated tau in neurons. The enhancement 
of autophagy pathways may have potential as a novel therapeutic 
strategy in AD and other neurodegenerative diseases, along with 
inhibiting in vivo signaling pathways that form hyperphosphorylat-
ed tau and proteins aggregates.  Phosphorylation of the tau protein 
is regulated by inhibiting GSK-3β, CDK5, and activating PP2A acid 
esterase. In vitro cell culture studies have revealed that aniline, 
rhodanine, benzylhydrazide, amino pyridine, and other such com-
pounds can inhibit the aggregation of tau. In recent years, a defect 
in kinase inactivation in old age has been suggested as a potential 
mechanism linking body temperature regulation and tau protein 
phosphorylation. This finding could provide a strategy to help the 
elderly improve their thermoregulatory mechanisms. It may also 
serve as a potential new AD treatment strategy.

Table Abbreviations

Frontotemporal dementia and tremor paralysis: FTDP-17, 
Microtubule Associated Protein Tau: MAPT, progressive supranu-
clear palsy: PSP, Marfan syndrome: MFS, Alzheimer’s disease: AD, 
Creutzfeldt-Jakob disease: CJD, Colony Stimulating Factor: CSF
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