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ARTICLE INFO Abstract

Neurodegenerative diseases have been marked by neuroinflammation and 
remarkable sexual differences in prevalence and pathology preclinically and clinically. 
Microglia, the resident innate immune cells in the brain, present sexual dimorphism 
in terms of number, morphology, and distribution in neurodegenerative diseases, 
especially in Alzheimer’s disease and Parkinson’s disease. This sexual dimorphism of 
microglia play as a big fish in healthy and disorder brain. But the mechanisms for the 
divergence are not well known. Microglia plays an active role in early healthy male 
and female brain development, including sexual differentiation and development of 
neurodegenerative diseases. It has been found that microglia are a key fastener involved 
in neurodegenerative diseases and sexual steroids, such as estrogen, testosterone, and 
progesterone, have anti-inflammatory effects on microglia-mediated neuroinflammation. 
The interaction between sexual hormone and neuroinflammation in male and female’s 
neuroimmune signal catches researchers’ eyes at a high rate of speed. Here we focus 
on recent advances in microglia-mediated neuroinflammation relative with gender 
differences in neurodegenerative diseases.Keywords: IgA vasculitis; Henoch-Schönlein 
Purpura; Abdominal Phenotype; Gastrointestinal Endoscopy  

Abbreviations: AD: Alzheimer’s Disease; PD: Parkinson’s Disease; POA: Preoptic Area; 
LPS: Lipopolysaccharide; MCI: Mild Cognitive in Impairment; FTD: Frontotemporal 
Dementia; PGE2: Prostaglandin E2; ERs: Estrogen Receptors; MS: Multiple Sclerosis; 
ERE: Estrogen Response Element; P3: Postnatal Day 3; EAE: Experimental Autoimmune 
Encephalomyelitis; TLR4: Toll-Like Receptor 4; RAS: Renin Angiotensin System; TREM2: 
Triggering Receptor Expressed on Myeloid Cells; PYD: Pyrin Domain; AIM2: Absent in 
Melanoma2; ROS: Reactive Oxygen Species; iNOS: inducible Nitricoxide Synthase; Nrf: 
Nuclear Factor; PPAR-γ: Peroxisome Proliferator-Activated Receptor-γ; PR: Progesterone 
Receptor; AR: Androgen Receptor

ARTICLE INFO Abstract

Introduction
Neurodegenerative diseases, including Alzheimer’s disease 

(AD) and Parkinson’s disease (PD), are generally featured by 
neuroinflammation and procedural loss of selectively vulnerable 
populations of neurons, which lead to cognitive impairment, 
dementia and decline in motor functions [1,2]. The most common 
pathologies of neurodegenerative diseases are amyloidosis, 
tauopathies, α-synucleinopathies, and transactivation response 
DNA binding protein 43 (TPD-43) [1]. Moreover, amyloidosis, 

tauopathies, and α-synucleinopathies are all associated with 
neuroinflammation and microglial activation [3-5]. Through 
phagocytosing abnormal synaptic constituents of neurons, 
microglia play active roles in synaptic disorders. Moreover, microglia 
are also associated with synaptic spreading of tau, which is related 
to the activation of NLRP3 inflammasome [6]. Early microglia 
responses predicted an improved cognition in PS2APP amyloid 
mouse model, which suggested the innate immune system could 
constitute a more relevant therapeutic target [7]. The prevalent of 
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neurodegenerative diseases is increasing, and abundant preclinical 
and clinical data demonstrate that neurodegenerative diseases 
disproportionately affect male and female in both prevalence and 
symptom progression [8,9]. 

Surprisingly, sexual difference existed in microglia isolated 
from animals. Moreover, microglia in mice emerged sex divergences 
in different age, especially in older mice. These studies suggested 
that microglial gender differences could tend to emerge more em-
inently in aging and age-related disorders, such as neurodegener-
ative diseases [10]. Sex differences in neurodegenerative diseases 
are finally attributed to sexual chromosome and sexual hormone. 
Such as SRY, a Y-chromosome gene, directly contributes to the gen-
der differences in the 6-OHDA-induced rat model of PD [11]. Fur-
thermore, estrogen act on microglia by attenuating the response to 
inflammatory stimulation and regulating microglial proliferation 
[12]. Women are more twice than men to suffer from AD over 65 
years old and cognitive decline is more severe in women. On the 
contrary, PD is more common in men (1:3.5) [13]. In an animal ex-
periment, females have more microglia in several specific brain re-
gions than males in healthy adult rats [14], which may account for 
gender differences in susceptibility to CNS diseases. Microglia, the 
resident innate immune cells in the brain, has been long well-docu-
mented to be decisive for maintaining the homeostasis of the CNS. 

It was reported that the sexual differences of susceptibility 
to neurodegenerative disorders maybe start with genes [8]. In 
recent years, sex specificity of microglia has become a hot topic in 
studies because its immune functions are associated with sexual 
differentiation in neurodegenerative diseases. Gonadal hormones 
are paramount importance for microglial sex differences. Modulated 
by sex hormones, the roles and mechanisms of microglia are different 
in the process of associated neuroinflammation. Both estrogens 
and androgens play significantly neuroprotective roles in the adult 
brain and attenuate multiple aspects of AD- and PD-associated 
neuropathology [9,15]. In addition, the X chromosome, containing 
a mass of immune-associated genes, is another connection between 
immunity and gender. In the developing of female preoptic area 
(POA), immune-related genes are enriched significantly after the 
suppression of DNA methyltransferase activity [16]. Therefore, the 
X chromosome may influence the immune response in a number of 
ways, leading to sexual differentiation.

Sexual Dimorphism of Microglia in Healthy and Disorder 
Brain

Microglia account for 5 to 15% of adult no-neuronal cells that 
varies in distinct brain regions and make up a large number of 
immune cells of brain. Under physiological conditions, microglia 
hold uniqueness in location within the brain parenchyma, and they 
can directly contact with neuron, neural progenitors and other cells 
in these parenchymas [17]. Microglia act as the central junction 
between inflammation and neurodegenerative disease [13]. The 
cell has two major functions: watching over the overall health 
of neurons and synapses and examining the brain for potential 

threats and problems. When microglia detect abnormal substances, 
such as amyloid or damaged cell debris, they become activated 
and signal to other microglia to execute clean-up tasks orderly 
[17,18]. There are sexual dimorphism of brain regions, including 
POA of hypothalamus, spinal nucleus of the bulbocavernosus, and 
developing hippocampus, amygdala, and cortex [19]. Meanwhile, 
neurons, astrocytes and microglia exhibit gender specificity in 
cell number, distribution and function [20]. Especially astrocytes, 
another important immune cells in the brain. However, in the last 
10 years, microglia have received more attention about gender than 
astrocytes (Figure 1). 

Figure 1: Comparison of publications on microglia and 
astrocytes in relation to sex in the title or in the abstract.

Human transcriptomes of the brain at different age and the 
brain span dataset illustrated that gene associated with microglia 
phagocytic and immune function are highly expressed [21]. The 
sex-dependent pro-inflammatory profile could be a microglia-spe-
cific feature, which is lacking in function-similar macrophages [22]. 
All of these increasingly affirm these indispensable roles of microg-
lia in sexual dimorphism of the brain (Figure 1). During the pro-
cess of microglia maturation, sexual dimorphism of microglia has 
an earlier impact on male than female. Moreover, there is an obvi-
ous acceleration in male microglial development after treated with 
lipopolysaccharide (LPS), while female microglia have no changes 
during their maturation stages. These documents suggested that 
male microglia would be more susceptive to neuroinflammative 
agents, which could answer for rapid aging of microglia and brain 
dysfunction [23]. Namely, although differences are limited in their 
colonization patterns, male and female primary microglia have 
shown several gender-specific divergences in their transcriptom-
ic signatures. Female primary microglia presented higher expres-
sion levels of genes related to inflammation, apoptosis, and LPS 
response [24]. 

Moreover, through abundant detections of major 
histocompatibility complex molecules (MHC) from microglia 
isolated from cortex and hippocampus, higher antigen-presenting 
capacity of microglia was discovered in naive males [25]. There 
are more than 500 divergently expressed genes between males 
and females [22]. A report about molecular signature analysis 
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of transcription factors suggested NF-κB, a transcription factor 
associated with the regulation of genes, more expressed in 
males than females. Microglia isolated from female mice showed 
a neuroprotective phenotype independent of hormonal cues, 
which was retained when these neuroprotective microglia were 
transferred into brains of male mice [22]. Analogously, subsequent 
studies revealed transcriptomic features of male microglia towards 
pro-inflammatory functions and luciferase activities were 2.4-
time higher than female microglia [25]. There are numeral and 
morphological variances in different brain regions of female and 
male rodents [26]. Amygdala, POA, hippocampus and cortex are the 
main brain regions in which microglial sex differences [27-30]. In 
the developing POA, there are more ameboid-shaped microglia in 
male brains, while female brains possess more surveying microglia, 
which suggests that the interaction between microglia and gonadal 
hormones play a crucial role in the development of the POA [28,31].

Sex Dimorphism in Prevalence and Development of 
Dementia

AD is the most common one of neurodegenerative diseases, 
with more than 35.6 million persons worldwide estimated to be 
affected. The number of Alzheimer’s patients is expected to almost 
double every 20 years and will add to 65.7 million in 2030 and to 
115.4 million in 2050 [32]. A recent estimate suggested that the 
global costs for dementia will be 9.12 trillion in 2050, which is more 
4.8 folds than the prediction made by the world Alzheimer Report 
2015 [33]. One clinical-pathologic study reported that the incidence 
of AD is higher in women, exactly 1.33 times than in men aged over 
70 years old. This higher incidence in women was observed more 
previously from 60-64 years old to 95 years old [34,35]. A review 
discussed key differences between male and female patients with 
AD as follows: firstly, men and women undergoing AD present 
diverse cognitive and psychiatric symptoms, and females present 
rapider cognitive decline after diagnosed with mild cognitive in 
impairment (MCI) or dementia. 

Secondly, women have more neuronal tangles in both mesial 
temporal and neocortical areas. Thirdly, the rate and pattern of 
brain atrophy vary among AD patients of different genders, women 
had more AD pathologic diagnosis, especially had more tau tangles 
density. MCI found that atrophy of brain is rapider in females than 
in males [36]. The gender difference in AD incidence may be related 
to age [37]. However, no interaction was found between gender and 
age, and no linear association between age and AD pathologies, 
which similarly attested that women have a higher incidence of 
AD than men, regardless of age [38]. Frontotemporal dementia 
(FTD) is one of the major progressive neurodegenerative diseases. 
Similar to other types of dementia, much evidence suggests that 
neuroinflammation is a major factor of the pathogenic process, 
involving excessive microglial activation, astrocytosis, cortical 
inflammation, and divergent expression of inflammatory cytokines 
in the periphery [39]. A meta-analysis referring to sex differences 
in FTD revealed the same outcome as other dementias-a higher 

prevalence of female patients with GRN-relative FTD than male 
patients [40].

Under basal conditions and in the presence of proinflammatory 
stimuli, male microglia showed a markedly increased migratory 
capacity compared with female microglia in vitro. Oppositely, female 
microglia exhibited significant enhanced basal and stimulated 
phagocytic activity [41]. Anti-aging drugs, such as acarbose, 
17-a-estradiol and nordihydroguaiaretic acid, reduced the number 
of microglia, as well as age-associated overproduction of TNF-a in 
the hypothalamus of male UM-HET3 mice, but these effects are not 
founded in female mice, which suggests that microglial activation 
in the hypothalamiccould is effected by drug-induced changes in 
a gender-specific manner [42]. That sex-dimorphism preference 
in neurodegeneration might be meditated by estrogen-induced 
kallikrein-8 (KLK8) overproduction which emerged in neuronal 
and microglial cells long before AD pathology [43].

Mechanisms: The Role of Estrogen and Testosterone in 
Microglia Actions and Neuroinflammation

The CNS is a principally steroidogenic environment to synthesize 
and metabolize steroids stemming from the circulation. Microglial 
neuroinflammation can severely affect neurosteroid synthesis, vice 
versa, steroids can in return mediate microglial neuroinflammation, 
such as 17β-E2, testosterone and allopregnanolone [44]. During 
the development of hippocampus and cortex, the expression of the 
C-C motif chemokine ligands 20(CCL20) and C-C motif chemokine 
ligands 4(CCL4) in the developing male hippocampus and cortex 
are more than 200-fold and 50-fold compared with those of female 
respectively, which results in the divergent perinatal colonization 
of brain areas concerned with cognition and memory and plays a 
role in highly gender divergent hippocampus, amygdala, and cortex. 
The result suggests that much more sex hormones involved in the 
development of male brain [14,45]. Nowadays, plenty of researches 
have shown that sexual differentiation and microglia during the brain 
development play critical roles in neuroinflammation. Microglia 
increased estradiol production and promoted neuronalsecretion of 
prostaglandin E2 (PGE2) [19]. Several documents suggested that 
other inflammatory agents may participate in sex divergence in 
brains, particularly during the developmental processes. 

Meanwhile, studies have also found significant gender 
divergences in the expression of several inflammatory genes and 
pro-inflammatory cytokines in the developing POA. In vitro, male 
and female microglia have shown different inflammatory signaling 
to LPS and estradiol treatment [46], which argues that in gender 
differences of brain, microglia may be not only in number or 
morphology, but may also be phenotypic. Gender differences were 
appeared in normal neurodevelopment of rodents during several 
stages, which could affect the dynamically interactions between glia 
and neurons. Therefore, these stages would be set for both resistance 
and sensibility to the deterioration of the neurodegenerative 
diseases in a gender-specific manner [23]. Steroid hormone 
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receptors are differently expressed in different sources of microglia, 
including BV2 and primary microglia isolated from adult mouse 
brains [47]. Moreover, these receptors are differently distributed in 
microglia by quantitative and morphological in normal and injured 
brains. Both estrogens and testosterones exert anti-inflammatory 
effects on microglia [48]. 

Estrogen

Classical Estrogen Receptors and Functions (ER): Estrogens, 
produced mainly by the ovary, are highly involved in the development 
of femaleness and maternal functions. Meanwhile, estrogens exert 
several effects on a large proportion of organs, including brains. 
Estrogens can go through the BBB and be endogenously produced by 
the brain relying on its own cholesterol [49]. Estrogens are exposed 
in females including estrone (E1), estradiol (17-β-estradiol, E2) and 
estriol (E3), and E2 is the primary and most effective circulating 
estrogen. Estrogens and estrogen receptors (ERs) are identified 
as anti-inflammatory factors in the model of Multiple Sclerosis 
(MS), which suggested that estrogens and ERs may take part in 
physiological regulation of neuroinflammation [50]. Functions of 
estrogens and ERs in brains are extremely complex. ERs possess 
two classical subtypes: ER type 1(ER1; mainly named as ERα) and 
ER type 2 (ER2; mainly named as ERβ). Both of them can bind to 
17β-E2 and activate estrogen-regulated genes [51,52]. The third 
ER called G-Protein–Coupled ER (GPER1, commonly named as 
GPR30) is a membrane ER in several tissues [53,54]. Additionally, 
several splice variants have been demonstrated, which may be the 
reason for divergences to estrogens. ERs translocate to the nucleus 
and bind directly to specific estrogen response element (ERE) 
sequences on the DNA or to other transcriptional factors to regulate 
genic expression [49,55,56]. 

Membrane-bound ERα and ERβ are also involved in activation 
of fast-acting signaling pathways. GPR30 could traverse the plasma 
membrane and trigger rapid signaling cascades [54,57]. Orderly 
activation of ERs may lead to initially rapid responses followed 
by genic expression and will regulate the long-term responses 
[58]. They differ considerably in different cell systems with 
different structure and function and bind to different estrogenic 
isomers. The expression of sex steroids receptors on microglia 
is associated with the phase of brain maturation and microglia 
are more sensitive to estrogens with older age: the level of ERα 
mRNA is detectable in microglia purified from mice at postnatal 
day 3 (P3) and up-regulates in adult mice [59]. The expression of 
ERβ from primary microglia can be detected in from P0 newborns 
but is undetectable starting from P3 until adulthood [47,60]. ERs 
knock-out mice models have certified that the specific activation of 
the ERα in the brain is responsible to mediate the neuroprotective 
effects of estrogens [61]. ERβ, expressed in CD11c+ microglia exerts 
indispensible effects in operating neuroprotection. Once ERβ was 
specifically removed from CD11c+ microglia during experimental 

autoimmune encephalomyelitis (EAE), the neuroprotection of ERβ-
ligand treatment was lost [62]. 

Non-Classical Estrogen Receptors and Functions 
(GPR30): The GPR30, a receptor binding 17β-E2 with high 
affinity, is recognized to play necessary roles in brain dysfunction. 
Mechanisms of specific activation to the GPR30 by 17β-E2 has 
been demonstrated [63]. GPR30 distributes extensively and covers 
almost all brain regions [64]. Through using polyclonal antibodies 
to defense against the human C-terminus of GPR30, researchers 
revealed an analogous spatial pattern in brains of rats [64], mice [65] 
and humans [66,67]. The immunoreactivity and mRNA expression 
of GPR30 were remarkable in forebrain of rats, such as hippocampi, 
frontal cortexes, medial septumes, diagonal band of brocas, nucleus 
basalis magnocellularises and the striatumes [63,68].

Specific ERs of Microglia in Anti-Neuroinflammatory 
Responses: Lots of evidences testify the importance of estrogens in 
neurodegenerative diseases. Nevertheless, there is an uninterrupted 
controversy concerning whether ERs or GPR 30 takes the beneficial 
effects on microglia. On the one hand, early studies indicated that 
ERα is a primary target for estradiol to produce anti-inflammatory 
effects in the brain [69]. Transcription factors can activate ERα acting 
as a ligand, but this activation is ligand independent. So far, little is 
known about neuroinflammatory signaling of microglia mediated 
by ERα in neurodegeneration. An experiment demonstrated that 
ERα expressed in neuron takes part in the neuropretective effects 
of estrogen [70]. In addition, ERα mediated immune response and 
microglial activation, which happened in the brains of women who 
are estrogen deficient or estrogen aging [71]. 

On the other hand, it is not ERα but ERβ predominately 
expressed in microglia .What’s more, ERβ-selective agonists could 
ameliorate some experimental immune diseases by means of 
regulation to T cells and microglia [72]. Moreover, 5-androsten-
3β and 17β-E2 synthesized by microglia showed that reduction of 
ADIOL or ERβ expression resulted in exaggerated inflammatory 
responses to toll-like receptor 4 (TLR4) agonists. And the murine 
BV2 microglia cell line selectively expresses ERβ. These results 
provided evidence that an ADIOL/ERβ/CtBP-transrepression 
pathway mediates inflammatory responses in microglia and can 
be selectively targeted by ERβ modulators by controlling the 
inflammatiory magnitude and duration in microglia and astrocytes 
[73,74]. GPR-30 was also detected in primary microglia purified 
from rat brains. Moreover, researchers have revealed that GPR-30 
agonist could obviously inhibit the accumulation of microglia [75].

Effects of Estrogen on Microglial Activation: The changes 
of sex steroid, such as estrogen in females and testosterone in 
males, are associated with an increasing risk of neurodegenerative 
diseases [58]. The postmenopausal women have a significantly 
decreasing risk of AD by applying hormone replacement therapy 
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(HRT), accompanied by the decline in number of phagocytic 
microglia [76]. Furthermore, ovariectomy(OVX) decrease ERα 
level that deteriorate brain damage, and exacerbatepost-stroke 
inflammation. To be more specific, OVX can enhance angiotensin 
and NADPH-oxidase activity, as well as increase the expression 
of neuroinflammatory markers. But these effects are changed by 
estrogens. During that process ERα and the brain renin-angiotensin 
system play a major role [77]. Estrogens exert anti-inflammatory 
and neuroprotective effects in the central nervous system. Studies 
revealed that microglia can express subsets of classical, non-
classical ERs and progesterone receptors in a dynamic way [78]. 
Microglia are involved in ERα-induced regulation of local renin 
angiotensin system (RAS) [58,77]. These facts could indicate that 
estrogens generally enhance the immune system. 

Therefore, among sex steroids, estrogens have been received 
the most attention in preclinical and clinical investigation [79]. Mi-
croglia has no ERα in the POA, an important brain area for sexual 
behavior, and is featured by prominent neuroanatomical gender 
differences [27]. Exogenous estrogens have immune-enhancing ef-
fects on humoral immunity and may mediate cell-mediated immu-
nity at different dose. However, exogenous testosterone can simul-
taneously depress both humoral and cell-mediated immunity and 
increase sensibility to bacterial and viral infections [80]. When ac-
tivated primary microglia were treated with 17β-estradiol, induc-
ible nitricoxide synthase (iNOS) and reactive oxygen species (ROS) 
were declined [75,81,82]. It has been shown that estrogens could 
produce anti-oxidant and anti-inflammatory effects by activating 
endogenous inflammatory signaling, such as phosphatidylinosi-
tol 3-kinase /protein kinase B (PI3K) [83] /nuclear factor (eryth-
roid-derived 2)-like 2 (Nrf2) and peroxisome proliferator-activated 
receptor-γ(PPAR-γ) [84,85]. Furthermore, a wealth of experimen-
tal models indicated that deficit in endogenous estrogens facilitates 
the onset of inflammation, and these inflammation reactions could 
be antagonized by estrogen replacement. 

In many inflammatory models, estrogens clearly opposes the 
inflammatory process by blocking the synthesis of proinflammatory 
mediators, hematopoietic growth factors and cell differentiation 
agents [61]. Estrogens can decrease the production of inflammatory 
cytokines through intervening TLR signaling pathways associated 
with AP-1and NF-κB. Evidences showed that NF-κB p65 is damaged 
by estrogens through a non-genomic pathway. ERα can inhibit 
NF-κB activity by the induction of IκBα, an inhibiter of NF-κB. 
Equally, AP-1 is associated with effects of estrogens, for which 
the p85 PI3K signaling pathway is related to estrogen-dependent 
blocking of TLR4 signal pathway [47] (Figure 2). In the presence 
of inflammatory responses, estrogen regulates cytokine expression 
at basal levels through microglia [86], while testosterone and 
androgen have an inhibitory effect on glial activation [87]. 

However, how these sex steroids specially alter the microglial 
activity leading to gender divergence of the brain is still not 
understood [79,80]. Testosterone is converted to 17β-E2 by 
aromatization in neurons, and after that process, testosterone 
can exert its reproductive capacity via ERs. Both male and female 
brains of fetus are exposed environment with high levels of 
estrogens produced by placentas and mothers. Nevertheless, in 
female fetus, α-fetoproteins bind estrogen and act as carriers, 
which protects fetal brains from virilising effects of estrogens by 
stopping estrogens to entry into cells [88,89]. Surprisingly, fetal 
and postnatal microglia are strongly associated with this process 
through mediating the release of sex steroids especially in the 
POA, which results in microglial activation and affects fetal brain 
programming in a gender-dimorph manner [19].

Testosterone and Progesterone: A study found 
progesterone has therapeutic effects on microglia activation and 
neuroinflammation. Progesterone therapy deceased neurological 
behavioral deficits. In addition, progesterone therapy reduces 
the mRNA expression levels of M1-markers in corpus callosum 
regions, while the expression of M2-markers was significantly 
increased, such as triggering receptor expressed on myeloid cells 
(TREM2) , CD206, Arg-1 and TGF-β. Furthermore, progesterone 
therapy significantly decreases the mRNA and protein expression 
levels of NACHT-, LRP- and pyrin (PYD)-domain-containing protein 
3 (NLRP3) and IL-18 (~2 fold) [90]，and it is plausible that 
progesterone could act on other inflammasomes regulation at the 
microglial level, such as NACHT-,LRP- and pyrin (PYD)-domain-
containing protein 1 (NLRP1), absent in melanoma2 (AIM2)and 
NOD-like receptor family apoptosis inhibitory protein (NAIP-
NLRC4). 

Data showed that supplementation of testosterones in castrat-
ed male mice restored tight junction integrity, the BBB selective 
permeability and the inflammatory features was almost abolished, 
such as iNOS, cyclooxygenase 2 (COX-2), interleukin 1 beta (IL-1β) 
and TNF-α [91-98]. During embryogenesis in humans and neona-
tally in rodents, production of testosterone is responsible for the 
masculinization of selected brain circuits which control sexually 
divergent behaviors and physiological processes. In line with these 
evidences, microglial gender divergences in number and morphol-
ogy appear not until testosterones soar at P4 when more morphol-
ogy-activated microglia in male rats. That pattern was shifted until 
P [30], which is previous to the onset of adult circulating hormones 
[14]. Although progesterone receptor (PR) and androgen receptor 
(AR) are not discovered in adult microglia, data show that devel-
oping microglia express both PR and AR, which results in microg-
lia respond to the surge in testosterone and adjust microglia into 
a male-specific pattern of maturation [59] (Tables 1-3)(Figure 2).
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Figure 2: The anti-inflammatory effects of estrogens, testosterone and progesterone on microglia, Firstly, estrogens take anti-
inflammatory effects by combining with their receptors (ERα, ERβ and GPR30). They inhibit the production of in cytokines by 
interfering with TLR signaling through NF-κB and AP- I. ERα inhibits NF-κB activity by inducing the synthesis of its inhibitory 
protein-IkBα. Similarly, AP-1 is involved in the actions of estrogen by p85 PI3K signaling. Estrogens also inhibit the activation 
of microglia. Secondly, progesterone and its receptor PR could inhibit NF-κB and NLRP3 inflammasome activity resulting in 
lower reduction of IL-1β, IL-18, COX-2, and PGE2, Lastly, testosterone holds the BBB selective permeability, tight junction 
integrity and almost completely abrogated the inflammatory features, such as iNOS, COX-2, lL-lβ and TNF-α.

Table 1: Neuroinflammation presents sexual dimorphism in different models of Alzheimer’s disease.

Model Exposure Effects Reference

AD patients Female AD patients had higher levels of CHI3L in cerebellums 
than males. [92]

Tg CRND mice 2 months old of postnatal age 
(P60)

Neuroinflammation was more prominent in females at later 
disease stages. [43]

C57BL6 mice 3, 12 and 24 months old
Inflammatory genes were enhanced in females compared with 
age-matched males, and aging-associated genes highly spread 

for microglia-specific transcripts.
[93]

Tg 2576 mice 6 and 14 months old Oligomeric and monomeric Aβ were decreased in female hippo-
campi but increased in males when mt1 was overexpression. [94]

APP/PS1 mice 16 months old TSPO was significantly higher in female mice. [95]

LPS-induced APP/PS1 mice 4.5-month-old mice were treated 
with 100µg/kg LPS Female hippocampi were more tolerant to acute inflammation. [96]

APP/PS1/tau triple-transgenic 
mice 12 months old Female mice displayed more prominent neuroinflammation 

than male 3x Tg mice. [97]

Primary male and female 
microglia

From forebrains of wistar rat’s 
newborn to 2 days, and stimulated 

by 20ng/mL TFN-γ for 24 hours

Male microglia showed higher migration, but female microglia 
showed higher basal and stimulated phagocytic activity. [41]

Abbreviations: CHI3L: Chitinase-3-Like 1 Protein; Aβ: Amyloid-β; TSPO: Translocator Protein of 18 kDa; LPS: lipopolysaccharide; 
TFN-γ: Interferon-g; MT-1: Metallothionein-1.
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Table 2: Effects of estrogens and progestogens on neuroinflammation in different models of Alzheimer’s disease.

Sex Hormone Model Exposure Effects Reference

Estrogens

APP23 mice Ovariectomy Pathological signs of AD and microglial 
activation were increased.

[98]

ICR rats Ovariectomied when 9 months old Microgliosis and astrogliosis and NF-κB 
activation were increased.

SD rats OVX, 10-15 pg/mL 17β-estradiol in mini-pumps (0.5 μL/
hour, 14-day release)

NLRP3 inflammasome formation was 
negatively regulated.

BV2 cells Aβ1-42 (1µM) and β-estradiol (10 μM) for 24 hours Microglial inflammatory responses were 
decreased.

BV2 cells Hypoxic stimulation for 3 hours and treated with 
17β-estradiol (27.24 ng/mL)

NLRP3 inflammasome formation was 
negatively regulated.

Progestogens

SD rats
Aβ25-35 (2 g/L) injected into the bilateral hippocampus CA1 
region and treated with progestogens (4 mg/kg, 8 mg/kg 

and 16 mg/kg)

expressions of TNF and IL-1β were de-
creased in a dose-dependent manner.

3xTg mice
allopregnanolone (10 mg/kg) respectively for 1/month 1/

week/6 months, and 3/week/3 months regimens single 
injection

Administration of allopregnanolone 
decreased microglial activation.

BV2 cells Hypoxic stimulation for 3 hours and treated with progesto-
gens (31.45 ng/mL)

Inflammasome activation in microglia 
was dampened.

Table 3: Effects of estrogens and progestogens on neuroinflammation in different models of Parkinson disease.

Sex Hormone Model Exposure Effects Reference

Estrogens

AD patients Recruited from the Swedish population ERβ genes polymorphismcorrelate with 
early age disease onset.

[98]

human
Women suffering unilateral or bilateral 
ovariectomy before the onset of meno-

pause showed higher risks of PD.

wistar rats OVX
Microglial activation is increased, while 
expression of microglia-mediated genes 

is downregulated .

C57BL/6N mice Ovariectomized when 10 weeks old and were 
given17β-E 0.01mg/day

6-OHDA and MPTP –induced ovariec-
tomized mice present heavier neuronal 

damage and stronger microgliosis 
compared.

C57BL mice female mice was induced by MPTP
Male mice presented faster iNOS and 

more dopamine after MPTP treatment 
compared to females.

C57BL/6 mice; BV2 
cells

MPTP-induced mice were given 5μg G1and 10 
μg G15 twice/day for 12 days; 100 μM MPP was 
treated to BV2 with G1 (1, 10, and 100 nM ) or 

G15 (100 nM) for 24h

G1 inhabited microglial activation and 
increased dopaminergic neuronal cell 
survival in male MPTP-treated mice.

WT, ERαKO, and 
ERβKO female mice

Ovariectomized when 10–15weeks, 7 days after 
OVX, all mice received injection of LPS(5mg/kg)

and treated with 180 μg/mL E2

17β-E2 reduced proinflammatory cyto-
kines (IL-1, TNF, IL-6, IL-12 p40) and the 

chemokine rantes in the female brains.

Primary microglia from 
1-2-day-old Wistar 

rats; and SH-SY5Y cell

Microglia were pretreated with Tam or Rlx and 
then treated with 10 ng/mL LPS for 6 h; SH-SY5Y 

were pretreated with Tam or Rlx for 24 h and 
then treated with 10 ng/mL LPS for 24 h.

SERMs can suppress production of 
proinflammatory cytokines and chemok-
ines, such as TNF-α, IL-1β, MCP1 or MIP2 

in microglia

Progestogens BV-2 BV2 were pretreated with progesterone for 1h, 
then treated with 10 ng/mL LPS for 4h.

NF-κB and JNK pathways, as well as

TNF and iNOS production were inhabit-
ed by progesterone.

Abbreviations: OVX: Ovariectomized; MPTP: 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine; SERMs: Selective Estrogen Receptor 
Modulators; MCP1: Monocyte Chemotactic Protein-1; MIP2: Macrophage Inflammationprotein-2; GFAP : Glial Fibrillary Acidic Pro-
tein
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Directions 

Since neurodegenerative diseases were first described more 
than 100 years ago, almost all of focuses were laid on the gross 
anatomical changes, such as excessive tau phosphorylation, 
superabundant protein aggregation and outnumbered neuron 
loss. Nevertheless, more and more mechanistic, genetic, and 
histopathological documents point to inflammation-related 
changes such inflammatory cytokines, immune cell proliferation 
and migration of inflammatory cells, highly dynamic phagocytosis, 
and reactive gliosis as general characteristics of neurodegenerative 
diseases, such as TREM2, inflammasomes and inflammatory 
complement cascades [99-101], which were long recognized as 
secondary or reactive responses to latent processes. Meanwhile, 
recently emerging evidences also start to break through the 
stereotypes and identify the immune system as the central player in 
disease occurrence and deterioration, and new functional aspects 
of these inflammatory signaling pathways are highlighted [102]. 
For example, Nlrp3 knock-out APP/PS1 transgenic mice presented 
fewer inflammatory cytokines and phosphorylated tau protein, as 
well as amyloid deposits. 

A risk genes analysis about PD pathway founds prominent 
pregnancy in several adaptive immune cells and immune signaling 
pathways. Pathogenic types of α-synuclein could induce immune 
responses in T cells which were purified from Parkinson’s 
patients [103,104]. Sex differences in neurodegenerative diseases 
mainly exist in microglia, which play indispensible role in 
neuroinflammation. Nowadays, neuroinflammation is becoming 
the focus of neurodegeneration. Surprisingly, Aβ might be a 
neuroprotective hero in the onset of neurodegenerative diseases, 
and infectious or sterile inflammatory stimulus might impulse 
amyloidsis [105]. Glial cells exert as important participants to 
the development and homeostasis of the central nervous system. 
Especially, microglia play the major role as the crossroad binding 
the immune reaction and the nervous system, each of which is 
extremely critical for the owner to percept external and internal 
environments16. In conclusion, it may be a promising research 
direction to explore the neuroinflammation, immune-mediated 
mechanisms and the application of immunomodulation. Anti-
inflammation in the brain and immune-modification strategy 
aiming at male and female in the way of precision medicine would 
be renewing and spark cure to neurodegenerative disorders.
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