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Introduction
Infectious diseases remain a main concern in the worldwide 

since the epidemics may cause up to five million severe illness 
and 500,000 deaths each year [1]. Many northern countries adopt 
surveillance and vaccination to prevent prevails. However, many 
countries in tropics underutilize the prevention strategy despite 
the year round outbreaks [2]. The recent studies show that the 
new sources of infectious disease mainly come from East and 
Southeast Asia [3,4]. The various ways of transmission and scarce 
surveillance data make the prevention of infectious diseases more 
difficult. The infectious diseases in temperate areas always appear 
in cold and dry climate [5,6]. In cold and dry weather, people may 
prefer to crowd indoor which will definitely lead to higher risk of 
contact virus transmission [7]. On the other hand, the cold and dry 
weather is most favorable for virus transmission [8,9]. In addition 
to humidity and temperature, the solar radiation has also been 
considered in the virus transmission in the temperate climate [10].  

 
However, the role of climate on the infectious diseases transmission  
in the tropics attracts less attention. Several regions observe high 
infectious disease transmission in the rainy seasons such as India, 
Vietnam and Brazil [11-14]. While in areas such as Singapore, 
Thailand and Philippines, the annual peaks of infectious diseases 
do not coincide with the rainy seasons [11-14]. 

Lowen et al.  [15] states that the contact transmission dominates 
in the tropics [15], while Alonso et al. shows that temperature 
and humidity contribute more to the virus spread than contact 
transmission in Brail [16]. According to the above analysis, the 
contributing factors to the infectious disease’s transmission are 
region-depended due to different transmission pattern.  With the 
monthly scarce surveillance data, we choose to study infectious 
diseases transmission in Hong Kong (22 °N). The objective of this 
study is to investigate the effect of temperature and humidity on 
infectious disease transmission pattern in Hong Kong. The model 
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with best performance can be used to predict infectious diseases 
outbreaks that can help develop vaccination strategy and allow the 
hospitals to distribute the treatment resources efficiently. 

Methods and Data
This study uses the monthly count of infectious diseases data 

in Hong Kong. We obtain the infectious cases data between January 
2003 and December 2018, from the monthly statistics published by 
the Department of Health, Government of the Hong Kong Special 
Administrative [17]. The climatic parameters are collected from the 
Hong Kong Observatory with the same frequency and period [18].  
We divide dataset into two: 

(i)	 For fitting process, where the coefficients are estimated,

(ii)	  Forecasting process, where future values are calculated 
using the predicted values, and the goodness of fit statistics will 
typically be used in the model selection. Out of 204 observations 
in Hong Kong infectious data, we used 156 points for fitting and 
48 for prediction.

The infectious cases time series that we analyze in this study 
is characterized by a strong autocorrelation, a property that 
commonly violates the ordinary linear regression. Thus, in order 
to account for the autocorrelation behavior, we employed a class 
of time series technique ARIMA. We first developed a univariate 
ARIMA model, where the response series depends only on its 
past values and some random shocks, followed with multivariate 
ARIMA with the environmental parameters as inputs. ARIMA is 
based on the assumption that the response series is stationary, 
that is the mean and variances of the series are independent of 
time. Stationarity can be achieved by differencing the series or 
transforming the variable so as to stabilize the variance or mean. 
In our analysis we take the logarithmic transformation to reduce 
the variances of the infectious time series, and subsequently 
differenced the series until it is stationary. Once the response series 
is stationary, we examine the ACF (Autocorrelation Function) and 
PACF (Partial Autocorrelation Function) to determine the initial AR 
(autoregressive) and MA (moving average) order. An ARIMA model 
is notated as ARIMA (p, d, q), where p indicates the AR order, d the 
differencing order and q the MA order. Based on the ACF and PACF 
we fit several ARIMA models with varying AR and MA orders. In 
the fitting process, the AR and MA coefficients are estimated using 
conditional least square method. 

The residuals are further inspected for autocorrelation through 
ACF and PACF. Models with autocorrelated residuals are discarded, 
else goodness of fit are examined through calculated AIC (Akaike’s 
Information Criterion) and the RMSE (Root Mean Square Error). 
The resulting model is subsequently used to forecast (1 step 
ahead) the latest infectious season, and the associated RMSE are 
calculated. Once we developed and selected a univariate ARIMA, 
we investigate the effect of the environmental variables and the 
corresponding lags on the infectious cases. The environmental 

series are first prewhitened. In other words, we applied univariate 
ARIMA modeling such that the environmental series no longer 
characterized by autocorrelation. Subsequently, CCF (Cross-
Correlations Function) between the pre-whitened environmental 
series and the infectious cases is then calculated so as to identify 
the lags to be included in the model. Environmental variables that 
do not exhibit significant cross-correlations with the infectious 
cases are excluded from further analysis. Similar to univariate 
ARIMA fitting process, we further estimate the coefficients of the 
AR and MA terms as well as the lagged environmental variable. The 
environmental input series are first included one at a time before 
combining them together. 

Results
In this paper, we employ a time series model ARIMA to analyze 

the infectious diseases transmission in Hong Kong during the past 17 
years. In the first step, we need to stationarize the series of monthly 
infectious illness amounts in Hong Kong as shown in Figure 1. By 
taking the log transformation of the series to reduce the variance 
of the infectious cases, we can get the stationary series. Then ACF 
and PACF are used to identify the specific order of the series. Both 
ACF and PACF cut off at lag 2. Furthermore, we fit several univariate 
ARIMA models of different orders to exclude models with residual 
exhibiting autocorrelation. The results can be obtained in Table 1. 
As we can see in Table 1, for the fitted dataset, the ARIMA (2,1,2) 
get the best performance for the criteria of RMSE, while ARIMA 
(2,1,1) has the best predictive RMSE and lowest AIC. Among the 
two different univairate models, the difference AIC of two model is 
5%, fit RMSE is 17%, the predictive RMSE is 9%. Since the fit RMSE 
gets the biggest difference and the other two are relatively smaller, 
we will choose the model ARIMA (2,1,2) as baseline model for 
further comparison. In the next step, we need put the environment 
factors into our model to examine if the performance can be better 
improved. We first examine the correlations between the infectious 
cases and environment series. 

Figure 1: Infectious Diseases Cases.
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The experiment results as showed in Table 2 confirm the 
significant correlations between infectious cases and temperature 
at lag 2, rainfall at lag 3. Then the multivariate ARIMA models are 
estimate with one or more environmental factors. The performance 
of these models is showed in Table 1. For these multi-variable 
models, the best fit RMSE is obtained from ARIMA (2,1,2) with 
temperature and rainfall. ARIMA (2,1,1) with temperature has the 
lowest AIC and ARIMA (2,1,1) with rainfall has the best prediction 
RMSE. Compared with these three models with the above three 
baseline univariate models, we can find that the models with 

environmental factors included enhance the fit RMSE by 8%, the 
AIC by 14% and the prediction RMSE by 11% from the baseline 
univariate models. Among the three best multivariate models, 
ARIMA (2,1,1) with rainfall has highest AIC. Thus, we exclude this 
model from our list. Between ARIMA (2,1,2) with both temperature 
and rainfall and ARIMA (2,1,1) with temperature, the difference of 
AIC is 3%, however, the difference of fit RMSE is 19%. So, we choose 
the ARIMX (2,1,2) model with temperature and rainfall as inputs as 
the best model. 

Table 1:  Summary of model performance for ARIMA.

Model Fit Prediction

RMSE AIC RMSE

ARIMA (2,1,2) 0.4135 171.56 0.5375

ARIMA (2,1,1) 0.4838 163.39 0.4931

ARIMA (2,1,2) with temperature and rainfall 0.3804 144.74 0.4651

ARIMA (2,1,1) with temperature and rainfall 0.4583 148.53 0.4438

ARIMA (2,1,2) with temperature 0.4432 150.53 0.4954

ARIMA (2,1,1) with temperature 0.4527 140.52 0.4783

ARIMA (2,1,2) with rainfall 0.4195 149.55 0.4553

ARIMA (2,1,1) with rainfall 0.4471 172.45 0.4389

Table 2:  Cross-correlation between infectious counts and environment series.

Variable Lag

0 1 2 3 4 5

Temperature 0.0143 0.0048 -0.1424* -0.0834 0.0093 0.0284

Rainfall 0.0004 -0.0142 0.1392 0.1732* 0.0932 0,0132

Discussion
In this study we investigate the relationship between infectious 

cases and climatic variables in the warm region Hong Kong. In the 
first part, we check if the univariate ARIMA can be applied to model 
the infectious cases with its own past values and random errors. 
We can find that the univariate ARIMA can forecast one-step ahead 
future infectious cases relatively well. The best univariate model is 
ARIMA (2,1,2) in which the infectious cases are depended on the 
cases in the past two months. In the multivariate ARIMA models, we 
find that the temperature and rainfall are significantly related to the 
infectious cases in Hong Kong. The relationship between rainfall 
and infectious diseases is observed in tropical countries in Singa-
pore, Brail and Thailand [12-14]. There is any connection between 
with infectious transmission effectiveness, virus survivorship or 
host susceptibility. In common sense, rainfall may cause changes in 
the social activity which in turn promote the transmission of infec-
tious disease. For example, in rainy days, people may prefer to stay 
indoors and thus promote the chance to contact with other people. 
The rainy season is between April and September in Hong Kong. 
Meanwhile, the infectious disease transmission peaks are typical-
ly around March and April, which is considered to be in the rainy 
season. 

Temperature is always accompanied with infectious diseases 
such as in Tokyo [6]. Especially in the northern region, the infectious 
diseases peaks always coincide with winters. The prevailing dry 
and cold climate during winter seems to enhance infectious disease 
transmission, though this is not the same case in the tropics. Lowens 
st al find that low temperature (5°C) and small amount of rainfall 
environment is efficient for infectious diseases transmission. The 
high temperature (30°C) can block airborne transmission but 
not contact transmission, which explains the infectious diseases 
transmission in tropics. The first peak of infectious cases occurs 
during the winter, i.e. December and January. The normal mean 
temperature at this time is 16-20°C and the humidity is always 
low due to the rare rainfall. According to Lowens et al. [8], 20°C 
temperature combined with relative dry weather induces very high 
transmission. The winter climate will result in the paradise for the 
transmission of virus. Another infectious cases peak occurs during 
summer, when the temperature is relatively high and the normal 
value during this period is 26-28 °C. Note that the rainfall starts to 
increase at this period of each year and the humidity is relatively 
high. As a result, the high rainfall frequency will promote the risk 
of contact transmission at this time of each year. Thus, it seems 
that the second infectious diseases transmission is predominantly 
caused by the contact transmission. 
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In this paper we have demonstrated the application of climatic 
variables and the infectious cases data through a mathematical 
model to assess the effect of environmental factors on infectious 
diseases. We have shown the prediction capability of the models, as 
measured by the RMSE of prediction dataset (Table 1), to forecasts 
the next infectious diseases period. Presently we use the one step 
ahead to forecast the infectious cases in the next month. In reality 
this may only be possible for cities with more advanced computer-
based surveillance systems such as New York City and Hong Kong. 
Most of the models developed depend on the past one to two weeks 
infectious cases. A more common way is to predict the infectious 
cases with more than one-step ahead forecasts. That is to say, the 
future forecasts are calculated with previously predicted number 
of cases instead of using the actual cases from the surveillance 
data (as in one-step ahead approach). However, one caveat to this 
approach is that more data is needed, since model selection will be 
based not only on the RMSE of the fitting dataset but also on the 
prediction dataset.

Conclusion
In this study, we combine the climatic parameters with the 

infectious disease cases through a time series model ARIMA. 
Through the comparison of several different models, we can 
conclude ARIMA (2,1,2) with temperature and rainfall included 
outperform other models and is the best model to predict the 
infectious diseases cases in the next period. Also, this model can 
approximately explain the two peaks of the infectious cases each 
year. Finally, the models in this study are a first step towards 
developing an early warning system for infectious diseases.
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