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Mini Review
Recent trend in drug discovery has been marked for the 

escalating cost and lowering rates of getting approved. In average, 
it costs upwards of $2.5 billion and about ten years to bring a new 
drug to the market [1]. Nearly 90% of drug candidates obtained 
with vast expense will fail somewhere between phase I trials 
and regulatory approval [2]. So, there is an urgent need for new 
solution to improve the efficiency of drug discovery process for 
pharmaceutical industry. In recent years, machine learning (ML) 
technique has gained a rapid development. Especially, the advent 
of deep learning (DL) enables the artificial intelligence (AI) to 
overwhelm human being in certain specific applications such as 
chess game and image recognition, marked by the victory of Alpha 
Go over the world strongest human Go player in 2016. Today, ML 
is widely applied in every aspect of human’s social and industrial 
activity, such as identification of spam email, handwritten word 
recognition, news recommendation, autonomous driving, medical 
image analysis, etc. In pharmaceutical industry, ML has become 
one of the most important and rapidly evolving tools in computer-
aided drug discovery, being involved in almost every stage in drug 
development [3]. There are already several specific and detailed 
reviews on the applications of ML techniques in drug discovery 
[3,4]. Here, we present a mini review with special focus on drug  
target identification and validation, drug design and optimization, 
and drug toxicity prediction. 

Drug Target Identification and Validation 
Identification of drug target is an important task in initialing 

a drug discovery pipeline. Modern biology has accumulated large 
amounts of human genetic information as well as transcriptomic, 
proteomic and metabolomic data, which renders it feasible to apply 
ML to identify drug target. For example, by analyzing the gene 
expression profile of young and old human skeletal muscle with 
ML approach, Mamoshina et al. [5] identified a panel of tissue-
specific biomarkers of aging, which showed good correlation with 
the actual age values of muscle tissue samples [5]. Similarly, Jeon et 
al. built a classifier with support vector machine (SVM) algorithm 
to identify drug targets for breast, pancreatic and ovarian cancers, 
utilizing biological information including gene essentiality, mRNA 
expression, DNA copy number, etc. as classification features. 
The predicted drug targets were validated by the strong anti-
proliferative effects of their inhibitors [6]. Target identification 
with ML is also useful for diagnosis and treatment of rare diseases, 
which usually lack effective treatment strategies. IJzendoorn et 
al. [7] performed machine learning analysis on transcriptome 
sequencing data, thereby uncovering diagnostic biomarker, 
prognostic gene and identifying potential novel therapeutic targets 
for soft tissue sarcomas, a group of rare cancers [7]. In addition to 
predicting  the potential target for specific disease, ML approaches 
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can also be utilized to unravel the common features of drug targets. 
Using amino acid composition and property group composition as 
features, Kumari et al. build a model with ensemble classification 
learning method-rotation forest to distinguish drug target from 
non-drug target, which proves to be useful for novel drug target 
identification [8]. In conclusion, machine learning may serve as 
powerful a tool to speed up target identification and validation. 

Drug Design and Optimization 
The ultimate goal of drug discovery is to bring new drugs to clinic 

to treat diseases. Once a target has been identified, the next issue is 
how to efficiently design and optimize chemical structures that will 
alter the disease state by modulating the activity of the identified 
target. In the past decades, computer aided drug design (CADD) 
has offered valuable tools for identifying active drug candidates, 
including molecular docking and quantitative structure-activity 
relationship (QSAR). With the rapid explosion of chemical and 
biological databases as well as the advance in ML algorithms, ML has 
become an alternative CADD tool for drug design and optimization 
[3]. For example, based on random forest (RF) algorithm, a novel 
score function was proposed to predict protein-ligand binding 
affinity, which outperformed other 16 classical scoring functions 
with accuracy increasing with the size of training dataset [9]. ML 
can also be applied to design inhibitors against non-molecular 
target. Cruz et al. developed ML models with k-nearest neighbor, 
RF and SVM algorithms using nuclear magnetic resonance data as 
features to identify molecules capable of inhibiting growth of cancer 
cell [10]. The advent of deep learning (DL) methods significantly 
boost predictive power of ML approaches. For example, in the Merk 
Kaggle, the DL outperformed RF approach using 2D molecular 
descriptors for 13 of 15 arrays [11]. Another advantage of DL is that 
it can be employed to optimize novel chemical structures towards 
desired properties. Olivecrona et al. designed a model based on 
recursive neural networks (RNN), which is capable of generating 
novel compounds with optimized parameters including bioactivity, 
solubility, pharmacokinetic properties and so on [12]. 

Prediction of Drug Toxicity
Currently toxicity is the major reason for drug candidate failure 

during development and clinical trials and is responsible for two-
thirds of the drugs pulled off the market [13]. So, it is essential 
to screen out compounds with the potential toxicity as early as 
possible to save the capital and labor devoted to the preclinical and 
clinical investigation [14]. One way to achieve this goal is to develop 
accurate methods for toxicity prediction. Initially the drug toxicity 
was predicted with QSAR methods, which build quantitative 
relationships between chemical structure or properties and drug 
toxicity [15]. The assumptions of linearity as well as the sensitivity 
to data dimensionality inherent in the early QSAR models limited 
their predictability. Currently, massive amount of newly available 
data makes it a rational choice to turn to ML for the prediction of 
drug toxicity. Researchers have used a combination of algorithms 

including k-NN, SVM, RF and DL algorithms to predict toxicity [16]. 
It was showed that the commonly used ML algorithms such SVM, 
RF, linear discriminant analysis (LDA) and neural network are 
unsuitable to process imbalanced Tox Cast data [17]. Fortunately, 
DL method proved to be a qualified method to treat such imbalanced 
data. For example, Xu et al. [18] built a live injury (DILI) prediction 
model with DL based on chemical structure data, which performed 
better than the DILI models reported previously [18]. In another 
example, convolutional neural networks (CNNs), a subclass of DL 
networks has been successfully used to predict toxicity in terms of 
images of cell pretreated with different drugs [19]. 

Concluding Remarks
Machine learning has received much attention as a powerful 

tool for uncovering patterns hidden in data. With the exponential 
growth of chemical and biological datasets over the past decades, 
machine learning algorithms such RF, SVM and LDA has been 
successfully applied to drug discovery process, as described above. 
Deep learning algorithms showed better performance on property 
prediction compared to the classic ML algorithms. However, there 
are still issues that deserves further study. One is the quality of 
training data, which is a crucial factor for the performance of 
resulting prediction model. Currently, the public accessible datasets 
such as Chem BL [20] and Pub Chem [21] are generally built by 
collecting data from different public literatures. Consequently, the 
inconsistency in the data collected this way is inevitable, which 
may ruin the resulting ML model. Here, further study is needed to 
present systematic, diverse, accurate databases as training dataset 
for building ML model. The other issue is about the interpretability 
of ML model. Recent revolution in deep learning networks makes 
it a promising tool for remarkable predictability. Unfortunately, 
the DL models are so complicated that their predictions cannot be 
interpreted or explained in physical or chemical terms, the so-called 
“black box”, which prevents drug designer from gaining insight into 
the prediction. So, a novel DL algorithm with a balance between 
predictability and interpretability will be expected in the future. 
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