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Introduction
The DNA double helix structure was first proposed by J.D. 

Watson & F. Crick [1]. They also presented a semi-conservative 
hypothesis, which necessitated that two single strands of a DNA 
double helix separate and each acts as a template for the synthesis 
of a new strand of DNA [2]. This semi-conser vative model of DNA 
replication was later confirmed by experiments (Meselson & Stahl 
1958). The replicon model for the control of DNA replication first 
proposed by Jacob, Cuzin and Brenner states that a trans-acting 
regulatory factor, the initiator protein specifically binds onto the cis-
acting sequence, known as the replicator at a specific chromosomal 
location to sequester other replication factors to initiate replication 
of the replicon at the origin of replication [3]. The replicon model  

 
therefore formed the basis of DNA replication studies that have 
been carried out in model organisms such as bacteria, budding 
yeast, fission yeast and metazoans. 

Recent advances in molecular and cellular biology, genetics and 
biochemistry have resulted in the identification of dozens of DNA 
replication-initiation proteins (DRIPs) and their regulators that 
control the initiation of DNA replication. However, these discover-
ies present new challenges and clearly indicate that there are still 
many aspects of DNA replication initiation that remain elusive. The 
initiation of eukaryotic DNA replication is a two-step process in-
volving replication licensing and origin activation. Pre-replication 
complex (pre-RC) assembly at the M-to-G1 transition (replication/
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ARTICLE INFO Abstract
 

DNA replication is a highly regulated cellular process in proliferating cells, involving 
cell cycle dependent assembly of DNA replication-initiation proteins (DRIPs) onto 
origins of replication. The process of pre-replicative complex (pre-RC) formation at 
the M-to-G1 transition, also known as replication licensing, requires origin recognition 
complex (Orc1-6p) that binds and marks replication origins to facilitate the loading of 
additional DRIPs, such as Noc3p, Ipi3p, Cdc6p, Cdt1p and Mcm2-7p. The subsequent 
activation of pre-RC at the G1-to-S transition is dependent upon cyclin-dependent 
kinases (CDKs) and Dbf4-dependent kinase (DDK). This sequential process ensures that 
DRIPs are precisely loaded to form pre-ICs and then activated by their regulators so 
that chromosomal DNA is replicated only once per cell cycle. Despite substantial gains 
in the study of the mechanisms and regulation of pre-RC, the finite details of the pre-RC 
assembly and disassembly processes remain unclear and controversial. In this review 
we describe the present state of understanding on DRIPs and the pre-RC architecture 
and dynamics.

Abbreviations: CDC6: Cell Division Cycle; CDC14: Cell Division Cycle; CDC45: Cell 
Division Cycle; CDT1: Cdc10-Dependent Transcript; CMG: Cdc45p-MCM-GINS; GINS: 
Slf5, Psf1, Psf2, Psf3; IPI3: Involved in processing IST2; MCM: Mini-chromosome 
maintenance; NOC3: Nucleolar Complex; ORC: Origin Recognition Complex; Pol30/
PCNA: Proliferating Cell Nuclear Antigen; pre-IC: Pre-Initiation Complex; pre-RC: Pre-
Replicative Complex; DRIP: DNA Replication-Initiation Proteins
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origin licensing) is stringently controlled, contributing to the once-
per-cell cycle control of DNA replication [4-12]. Deregulated rep-
lication may lead to aneuploidy, cancer and/or cell death [13-17].

The pre-replication complex is activated by cyclin-dependent 
kinases (CDKs) and Dbf4p-dependent kinase (DDK) after the cell 
has passed the restriction point (START in yeast), to form a pre-
initiation complex (pre-IC), at an origin of replication [18-20]. Re-
formation of the pre-RC within the same cell cycle is prevented 
by the phosphorylation (inactivation) of certain pre-RC factors 
[21,22]. Some other components are exported from the nucleus or 
degraded [23]. Origin activation is therefore irreversible once the 
cell becomes committed to the cell cycle after passing the restriction 
point. Activation of the origin leads to the action of helicases 
unwinding the DNA double helix and forming replication forks. 
Replication proteins assembled at replication forks incorporate 
nucleotides into newly synthesized DNA chains. This is done with 
high fidelity to ensure that replication results in viable genomic 
duplication. 

Eukaryotic Replication-Initiation Proteins (DRIPs)

Eukaryotic DNA replication has been most extensively studied 
in budding yeast Saccharomyces cerevisiae [4,5,9,24]. Most of the 
eukaryotic DRIPs were first discovered in budding yeast, and their 
homologs in metazoans were then identified by sequence homology. 
Budding yeast cells replicate their DNA from defined origins of 
replication that were first defined as autonomously replicating 
sequences (ARSs). The hetero-hexameric origin recognition 
complex (ORC) and Noc3p (nucleolar complex-associated protein) 
are bound to chromatin throughout the cell cycle, forming the post-
replicative complex (post-RC) during S, G2 and most of M phases of 
the cell cycle [9,12,22,24-27].

After dephosphorylation of DRIPs such as ORC, Cdc6p and 
Mcm3p by Cdc14p during the M-to-G1 transition, the sequential 
loading of Ipi1-3p, Cdc6p, Cdt1p, and MCM proteins at replication 
origins establishes the pre-replication complex (pre-RC) 
[9,22,25,27,28]. This process of origin licensing is followed by 
origin activation [18-20].

Origin Recognition Complex (ORC)

Yeast proteins were fractionated to identify DRIPs, and this led 
to the discovery of Orc1-6p as a hetero-hexameric protein complex, 
which was characterized and identified as an ATP-dependent ARS 
binding protein complex [29,30]. Components of ORC are conserved 
in eukaryotes, and this facilitated the identification of ORC in other 
eukaryotic organisms. It is evident now that ORC binds and protects 
replication origins throughout the cell cycle and is essential for 
loading other DRIPs onto replication origins [6,10,13,23,26,28-
30]. However, the dynamics of ORC at replication origins during 
DNA replication still remains to be elucidated. All ORC subunits 
barring Orc6p belong to the AAA+ ATPase super family of ring 
shaped P-loop NTPases. These proteins bind and hydrolyze ATP 

to facilitate energy-dependent processes such as remodeling of 
macromolecules or translocation. Orc1-5p form the critical sub 
complex that possess DNA binding affinity, but Orc1-6p together, 
are essential for the assembly and maintenance of pre-RCs.

Orc6p is directly involved in the origin association of Cdt1p-
Mcm2-7p [23,32-35]. Some reports have suggested that multiple 
MCM subunits have direct interactions with ORC during the loading 
of Cdt1p-Mcm2-7p [9,24,36]. Recent cryo-electron microscopy 
(cryo-EM) and single molecule studies using purified proteins 
show that the architecture of the Orc1-6p complex is asymmetric, 
while the Mcm2-7p complex forms a symmetric double-hexamer 
during pre-RC formation [36-43]. These interesting structural 
characteristics have spurred debates in the DNA replication field 
with several different models being proposed [8,38,40-44].

The “One-ORC” model proposes that a single ORC hexamer 
recruits one Mcm2-7p single hexamer which in turn recruits the 
second Mcm2-7p complex [10,41,44]. The “two-ORC” model 
suggests that two Mcm2-7p complexes are loaded onto origins in 
the same manner by two ORC single-hexamers, each bound at a 
single origin [43]. This is based on the finding that increasing ORC 
concentrations lead to a sigmoidal, rather than linear, increase 
in MCM loading and that the presence of two ORC binding sites 
supports MCM loading 10-fold more efficiently than a single ORC 
binding site [43]. It is interesting to note that most cryo-EM studies 
support the one ORC model, while there is evidence for the existence 
of ORC dimers, stated as <10% of the purified ORC [37]. Our recent 
protein interaction study of budding yeast and human DRIPs shows 
that several yeast and human ORC subunits self-interact [24].

Our study also suggests that ORC single-hexamers dimerize to 
form double-hexamers at replication origins before MCM loading at 
the M-to-G1 transition in vivo (unpublished). Importantly, our study 
suggests that the ORC dimer separates into two single-hexamers, 
each binding and protecting one of the two newly replicated origins 
from histone invasion. These findings uncovered an essential, cell 
cycle-dependent, and likely semi-conservative ‘dimerization cycle’ 
of ORC that regulates DNA replication. 

Noc3p

Noc3p is a basic helix-loop-helix (bHLH) protein that was 
initially identified as a component of the heterodimeric Noc2p-
Noc3p complex involved in ribosome biogenesis in budding 
yeast [45-47]. This complex is involved in the formation of the 
40S ribosomal subunits and its nuclear export [45]. Studies have 
indicated that the Noc complex mediates the maturation of 60S 
ribosomal precursors and the intra-nuclear transport of the 60S 
ribosome subunit [45]. Noc3p’s essential role in DNA replication 
has been established in budding yeast, where it is required for the 
chromatin association of Cdc6p and MCM proteins during pre-RC 
formation [25]. Noc3p is conserved in eukaryotic organisms, and 
the human homolog FAD24/hNOC3 is involved in DNA replication, 
differentiation and adipogenesis [48-52,12].
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Noc3p in both budding yeast and human cells interacts 
with ORC, Cdt1p, MCM and other DRIPs, and is required for the 
recruitment of Ipi3p (involved in processing IST2), Cdc6p and 
MCM proteins to replication origins for pre-RC formation during 
the M-to-G1 transition [9,12,24,25]. Both human and budding yeast 
Noc3p binds chromatin at replication origins throughout the cell 
cycle [12,25]. Silencing or depletion of human or budding yeast 
Noc3p resulted in pre-RC formation failure, S-phase entry defects 
and eventual cell death, without affecting the cellular levels of other 
known DRIPs within the experimental timeframe [12,25]. Over-
expression of Noc3p results in dosage lethality in Cdc6p mutant 
yeast cells, just as overexpression of other DRIPs do, which further 
elaborates Noc3p’s role as a DRIP [54]. The specific inhibition of 
RPA194 (a ribosome biogenesis pathway protein) did not result in 
pre-RC assembly defects, indicating a separation of function similar 
to that reported in the budding yeast [12,25].

Results from fission yeast experiments demonstrating 
significantly impaired S-phase entry and cell cycle progression 
with eventual G2/M phase arrest (likely due to incompletion DNA 
replication) following Noc3p depletion (inevitably incompletion 
depletion), similar to the phenotypes observed following ORC or 
MCM depletion, are consistent with current and previous findings 
regarding Noc3p’s role in DNA replication [12,25,54]. Noc3p is 
therefore a conserved, multifunctional protein. In addition to 
Noc3p, ORC, Ipi3p and Cdc6p have also been implicated in ribosome 
biogenesis, as well as DNA replication, suggesting that the processes 
of DNA replication and ribosome biogenesis are intricately linked 
and coordinated [10,13,26,28,46,56].

Ipi3p

Ipi3p is a component of the Rix1 complex (Ipi1p-Ipi2p/Rix1p-
Ipi3p), which is required for processing of ITS2 sequences from 
35S pre-rRNA and ribosome biogenesis [56-58]. A yeast functional 
proteomic screen identified Ipi1p, -2p and -3p as novel DRIPs [9]. 
Ipi3p binds chromatin at ARS sequences in an ORC-, Noc3p- and cell 
cycle-dependent manner [9]. Ipi3p is required for loading Cdc6p, 
Cdt1p and MCM2-7p onto chromatin during the M-to-G1 transition 
and also for the maintenance of the pre-RC in G1 phase [9]. Ipi3p is 
therefore required for pre-RC assembly and maintenance, and this 
is independent of its role in ribosome biogenesis. Interestingly, as 
Ipi3 also interacts with Noc3p, it serves to connect ORC and Noc3p 
to the other pre-RC components [9,24]. Like Noc3p and other 
DRIPs, Ipi3p is also conserved in eukaryotes, including humans 
[24,27]. The Ipi3p homolog in fission yeast crb3 was reported to 
interact with cut5 (a protein involved in DNA replication and check 
point control) [59]. 

Interestingly the cut5 homolog in budding yeast (Dpb11p) is 
required for replication initiation after pre-RC assembly [60,61]. 
Our study has established human hIPI3 as being required for 
human DNA replication licensing, cell cycle progression and cell 
proliferation [27]. Like the budding yeast Ipi3p, hIPI3 interacts 
with several human ORC and MCM subunits [27]. In particular, 

the interactions of hIPI3 with hORC2, hNOC3 and hMCM2 are 
consistent with those previously observed in budding yeast [9,27]. 
Furthermore, hIPI3, like hNOC3p, also preferentially associates with 
known human replication origins [27]. hIPI3 silencing experiments 
also suggest that hIPI3 role in DNA replication is independent of its 
role in ribosome biogenesis.

Cdc6p and Cdt1p

Cdc6p has been extensively studied in budding yeast. The 
protein belongs to the AAA+ ATPase superfamily and shares a 
high degree of homology with Orc1p [62]. Deregulation of this 
protein in humans has been linked to tumorigenesis [63,64]. Cdc6p 
functions as a DRIP by facilitating Mcm2-7p chromatin binding 
[28]. Mutations in the Cdc6p ATP binding domain significantly 
abrogate chromatin binding [65]. Defective Cdc6p ATP hydrolysis 
results in Mcm2-7p loading failure [65]. Furthermore, Cdc6p is 
also involved in the maintenance and activation of the checkpoint 
mechanisms in the cell cycle by coordinating the S and M phases 
of the cell cycle [66]. When over-expressed, Cdc6p in S. pombe can 
induce several rounds of DNA replication without cell division [67]. 
Furthermore, CDC6 gene expression is cell cycle dependent. Cdc6p 
accumulates during late M and G1 phases of the cell cycle, owing to 
the low Cdc28p-Clb5p-Clb6p CDK activity [68].

Cdc6p is degraded at the onset of S phase mediated by CDK 
phosphorylation, triggering proteolysis through the SCF/Cdc4 
pathway [69,70]. This mechanism contributes to the once-per-cell 
cycle control of DNA replication [68]. Structure studies have shown 
that Cdc6p binding to the DNA-bound ORC forms the ORC-Cdc6p-
DNA complex [38,71]. EM studies suggest that Cdc6p closes the 
crescent shaped ORC structure, forming a ring [72]. This process 
renders a conformational change in ORC which facilitates Mcm2-
7p loading [10]. Cdt1p (Cdc10-dependent transcript) was first 
identified in S. pombe as having Cdc10p dependent, cell cycle 
regulated expression [73]. It was later characterized as a key 
licensing factor in pre-RC formation in Xenopus [74]. 

Cdt1p is required for MCM nuclear localization and subsequent 
chromatin loading in budding yeast [75,23]. Cdt1p depletion ab-
rogates origin firing, but does not affect S phase progression [76]. 
CDT1 expression is at its highest in G1 phase followed by a steady 
decline upon entry into S phase in human cells during [77]. In bud-
ding yeast, Cdt1p accumulates in G1 phase and is subsequently 
exported into the cytoplasm before the START checkpoint [76]. A 
number of cryo-EM studies using purified proteins have revealed 
the complex structure of Cdt1p together with ORC, Cdc6p and MCM 
proteins [36,42,54,78,79]. Further in vitro and in vivo studies are 
required to fully elucidate the structure and interactions of these 
complexes.

Minichromosome Maintenance (MCM) Proteins

Originally identified through a genetic screen for factors 
involved in plasmid maintenance in budding yeast [80], the Mcm2-
7p complex comprise of six conserved, structurally related proteins 
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[80-82]. The MCM complex is a critical component of the pre-RC 
and is involved in replication initiation and elongation [83]. Mcm2-
7p chromatin association occurs during late M to early G1 phase, 
where it migrates with the replication fork in S phase in accordance 
with its function as a putative DNA helicase [84]. It has been shown 
that a complex of Cdc45p-Mcm2-7p-GINS (CMG) is the active 
helicase [85,86].

Regulation of the MCM complex is controlled by the nuclear 
export sequence (NES) within Mcm3p and the nuclear localization 
sequence (NLS) found in Mcm2p and Mcm3p [87]. These sequences 
are in turn regulated by B-type cyclin-CDK phosphorylation and 
Cdc14p dephosphorylation [22,87,88]. Mcm2-7p belong to the 
AAA+ ATPase family of proteins. However, none of the subunits 
actually exhibit any ATPase activity as determined by in vitro 
studies [89]. MCM complex subunits interact with one another to 
form a head-tail hetero-hexamer [9,24,89,82].

Cryo-EM studies have now shed further light onto the structure 
of the MCM complex. A study identified that interlocked amino-
terminal interactions form a central channel within the MCM 
double-hexamer [40]. This channel, comprising of four concentric 
rings consisting of interior β-hairpins, creates a passage specifically 
for duplex DNA [40]. The passage is flanked by two pairs of gate-
forming Mcm2p and Mcm5p subunits [40]. Although each MCM 
subunit has unique features and functions, the DNA channel 
structure forms the catalytic core of the MCM dimer in the budding 
yeast replicative helicase [11,42]. 

Pre-Initiation Complex and Proteins at Replication 
Forks

After pre-RC formation, CDK and DDK promote the loading of 
Mcm10p, Cdc45p, Sld2p, Sld3p, Dpb11p, GINS and DNA polymerases 
to the pre-RC, hence forming the pre-initiation complex (pre-IC). 
These actions are followed by helicase activation and the unwinding 
of replication origins [84,90-92].

Mcm10p was initially identified through genetic screening 
[80]. Mcm10p has since been shown to be a requisite for DNA 
replication initiation and elongation through its interactions 
with the pre-RC components in budding yeast [93,94]. Mcm10p 
chromatin association is cell cycle regulated [95]. The Mcm2-7p 
complex recruits Mcm10p to origins where it coordinates DDK 
phosphorylation of MCM, resulting in helicase activation [96]. 
Mcm10p deficiency in budding yeast primarily causes defects 
in replication fork progression [94]. Studies further implicate 
that Mcm10p recruits Cdc45p and Pol α/primase to origins [97]. 
Mcm10p is also a component of the replisome progression complex 
(RPC) and migrates with the replication fork [98]. Furthermore, 
Mcm10p recruits Sld3p and Cdc45p to the pre-RC [97]. Sld3p and 
GINS competitively bind Mcm2-7p [99]. Sld3p dissociates from the 
MCM complex following DNA unwinding, facilitating GINS-MCM 
complex interactions for CMG complex formation [99,94].

Subsequently, replication factor A (RFA) binds to protect the 
single stranded DNA, and new DNA strands are synthesized by DNA 
polymerases facilitated by other replication proteins. Given the 
significant advances in our understanding of replication initiation 
and replication fork progression, future investigations into the 
mechanisms and regulation of these proteins in normal and cancer 
cells may lead to discoveries that have significant clinical value.

Concluding Remarks
Eukaryotic genome duplication entails an intricately 

coordinated process in which the cell enforces a series of steps to 
ensure the regulated assembly and disassembly of several protein 
complexes at replication origins. Although there has been significant 
progress in elucidating the DNA replication initiation control 
mechanisms, several key questions remain unanswered. At present, 
several models of DNA replication licensing have been proposed, 
which although similar in principle, have fundamental differences. 
For example, the ORC dynamics presents a fundamental dilemma. Is 
“one-ORC” sufficient to load two MCM single-hexamers in vivo? Or 
are “two-ORCs” required to allow for the symmetrical and efficient 
loading of pre-RC proteins? How are new ORC proteins recruited 
to bind and protect the newly replicated origins? Our recent in vivo 
data suggest that ORC self-interacts and dimerizes to from double-
hexamers before MCM proteins are loaded onto replication origins. 
This process is likely mediated by other DRIP(s) (unpublished). 
Our model of ORC dimerization presents an essential, cell-cycle 
dependent and semi-conservative ORC dimerization cycle, in a 
dynamic cellular system to ensure faithful DNA replication.

Although it has been established that DRIPs are recruited 
sequentially onto replication origins, their respective biochemical 
activities have yet to be fully elucidated. For example, most DRIPs 
are known to bind ATP and have ATP hydrolysis activities. However, 
how ATP binding and hydrolysis are regulated to facilitate the 
formation and dissolution of DRIP complexes is not clear. 

Another issue concerns the roles of ribosome biogenesis 
proteins in DNA replication initiation. Ample evidence from studies 
in yeast and human cells support the dual roles of proteins like 
Noc3p, Ipi3p, Yph1p and Cdc6p in DNA replication and ribosome 
biogenesis. Importantly, we have identified separation-of-function 
Noc3p mutants that are defective in DNA replication without obvious 
defects in ribosome biogenesis, and vice versa (unpublished). These 
findings suggest that DNA replication and ribosome biogenesis are 
coordinated by these multi-functional proteins.

DNA replication is stringently controlled to ensure the integrity 
of genetic information in cell proliferation. Deregulation of DNA 
replication may give rise to cancer, for example, the deregulation 
of Cdt1p and Cdc6p promotes re-firing of the same origin [100]. As 
a result of active DNA replication and cell division, pre-RC proteins 
such as Cdc6p and Cdt1p and MCM complex proteins are found 
to be overexpressed in cancers to promote cancer development, 
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invasion and metastasis [101,102]. Importantly, it has been shown 
that silencing of DRIPs results in apoptosis of cancer cells but not 
normal cells [103-113]. It is therefore important to study DNA 
replication, particularly DRIPs, to further understand the molecular 
pathways and mechanisms involved in cancer development, helping 
to develop novel cancer detection methods and therapeutics.
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