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Introduction
End-stage lung disease is treated with lung transplantation. 

The advancements in lung transplantation has allowed it to be 
applied to a greater number of pulmonary etiologies [1,2]. Unlike 
other solid organs such as kidney and liver, only 15-25% of lungs 
from donors are transplanted [3]. These low percentages are a 
testament to the delicacy of lungs. Because of the difficulty of 
obtaining lungs suitable for transplantation, multiple methods 
have been used to expand the donor pool. The recent advancement 
of ex-vivo lung perfusion (EVLP) has arguably the greatest impact 
on revolutionizing the evaluation of donor lungs and expanding 
the number of lungs suitable for transplantation. EVLP allows for 
lungs to be ventilated, oxygenated and perfused for assessment 
prior to implantation. By creating a physiologic and controlled 
milieu, EVLP can also be used as platform for reconditioning and 
repairing lungs [4-9]. In the realm of lung transplantation, there 
have been promising results in drug, gene, stem cell and medical 
gas therapy. In addition, EVLP can be applied to thoracic oncology 
and regenerative medicine.

Drug Therapy
Using the EVLP circuit, medications can be added in the pul-

monary vessels and bronchus for directed therapy in study lungs. 
In the case of donor lungs, this would avoid systemic exposure and 
toxicity. One prime example of directed drug therapy for treatment  

 
of donor lungs is in the case of pulmonary emboli, which is a contra-
indication for transplantation. Machuca and colleagues described 
a case in which a pulmonary embolism was causing hemodynamic 
compromise in the donor lungs. Using EVLP, directed thrombolysis 
with alteplase was done followed by multiple flushings to wash out 
any residual emboli [10]. Another contraindication for transplanta-
tion of donor lungs is pulmonary infections, whether it is associated 
with mechanical ventilation or aspiration. Using an EVLP, Nakaji-
ma and colleagues were able to show that high-dose antimicrobial 
agents added to the perfusates of lungs can significantly decrease 
microbial load [11]. Similarly, after a severe Pseudomonas aerugi-
nosa infection was induced in the lungs of pigs, Zinne et al. placed 
these lungs on an EVLP circuit with added colistin to the perfusate. 
These lungs were kept on the circuit for treatment and re-implant-
ed into the pigs. In the EVLP group, there was reduced overall mor-
tality compared to conventional systemic intravenous antibiotic 
treatment of the pneumonia (control). The symptoms of infection 
were also less severe in the EVLP group. Therefore, though more 
research needs to be done, this could be an avenue of increasing the 
donor pool of lungs [12].

Gene Therapy
Much like drug therapy, directed gene therapy can also be 

done on the EVLP circuit. Anti-inflammatory cytokines can be 
used to treat donor lungs. Specifically, IL-10, which inactivates 
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antigen-presenting cells and inhibits the proinflammatory cytokine 
cascade, has been studied as gene therapy in EVLP. Machuca et al. 
[13] showed that treating lungs on EVLP with IL-10 transfected 
adenovirus is safe and improves post-transplant lung function 
and outcomes over EVLP alone in a porcine model [14]. This 
translated to a human model, as lungs from 10 donors deemed 
unusable for transplantation were treated with IL-10 gene therapy 
while on EVLP. Not only did these lungs had a more favorable anti-
inflammatory cytokine profile, these lungs showed improvement 
in arterial oxygen pressure and pulmonary vascular resistance 
compared to the controls [14].

Stem-Cell Therapy
The interplay between pro- vs. anti-inflammatory cytokines 

and cellular profiles comes into significant play in transplantation. 
Studies have shown that mesenchymal stromal cells (MSC) or 
multipotent adult progenitor cells (MAPC) can affect this balance 
[15,16]. Using EVLP, Nakajima and colleagues delivered MSCs to the 
pulmonary artery of lungs and showed that apoptosis was decreased 
compared to control. Acute lung injury and pro-inflammatory 
markers were also decreased in the MSC group. Air movement 
was also improved, as peak airway pressures were decreased 
in the MSC group compared to control as well [17]. It has been 
hypothesized that MAPCs can decreased primary graft dysfunction 
in transplanted organs by decreasing ischemic-perfusion injury. La 
Francesca and colleagues bronchoscopically instilled MAPCs into 
the left lower lobes (LLL) and vehicle control into the right lower 
lobes (RLL) of donor lungs. The lungs were placed into the EVLP 
circuit and perfused and ventilated. After the EVLP run, the lungs 
were assessed for histologic injury and for inflammatory markers 
in bronchoalveolar lavage fluid (BAL) and lung tissue. La Francesca 
and colleagues showed that the LLLs treated with MAPCs had 
significantly decreased histological inflammation and decreased 
inflammatory markers compared to the RLLs [18].

Medical Gas Therapy
Various gas therapies can also be used to study lungs on 

EVLP. Inhaled nitric oxide (NO) is used quite frequently in the 
realm of lung transplantation as a pulmonary vasodilator [19,20]. 
There have been some discussions whether pre-transplant NO-
ventilation could be helpful during the post-operative course. In a 
rat model, Dong and colleagues, ventilated rat lung with NO while 
on EVLP. They were able to show that lungs with NO-ventilation 
had significantly reduced wet:dry weight ratio, better oxygenation, 
and reduced pulmonary vascular resistance. There was also a 
maintenance of endothelial NO synthase (eNOS) and a better anti-
inflammatory profile for lungs ventilated with NO [21]. 

EVLP Outside of Lung Transplantation 
Thoracic Oncology

In 1958, Creech and colleagues used isolated lung perfusion 
with chemotherapeutic agents to treat pulmonary malignancies 
on an extracorporeal circuit much like EVLP. By using an EVLP 

circuit, lungs stricken with cancer can be given higher doses of 
chemotherapy without exposing the rest of the body to toxic levels 
of chemotherapy. This was successfully shown by Weksler and 
colleagues. They showed that in-vivo isolated single lung perfusion 
in rats is feasible with low mortality and morbidity [22]. Reck dos 
Santos and colleagues used this concept in the setting of pulmonary 
metastases. Reck dos Santos cannulated the pulmonary artery and 
veins in pigs in vivo, with a circuit similar to EVLP. The left lung 
was perfused for 4 hours with doxorubicin. There was no systemic 
exposure to doxorubicin with homogeneously distribution in the 
lung. There was also no evidence of acute lung injury [23]. Though 
promising, further studies are needed to determine is long term 
efficacy on local recurrence, toxicity, pulmonary function and 
overall survival.

Regenerative Medicine and Bioengineering

Organ engineering is another method to increase the number 
of organs available for patients with end-stage lung disease. 
Ott and colleagues developed techniques to decellularize lungs 
from various animals. These decellularized lungs are left with 
extracellular matrix and architecture that serves as a scaffold for 
cellular deposition. Ott was able to generate functional pulmonary 
vasculature by repopulating the vascular beds with endothelial 
and perivascular cells [24,25]. Ultimately, this decellularized 
platform can be used to potentially “grow” lungs for possible 
transplantation. EVLP has been suggested as a bioreactor circuit 
for delivery of cells to for the artificial organ and for providing a 
physiological environment for proliferation. It can also then be used 
as an assessment tool for artificial lungs.

Conclusion
Currently, EVLP is predominantly used as a platform for 

assessment of marginal donor lungs. With the capabilities of EVLP 
to ventilate and perfuse lungs, it can be used as a potent platform 
for lung therapies in and outside the realm of lung transplantation. 
Marginal lungs can be treated on the EVLP circuit for optimization 
prior to transplantation. Meanwhile, the EVLP or circuits similar 
can be used for lung isolation for oncologic treatments, or as a 
bioreactor platform for the growth of artificial organs.
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