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Mini Review
Human and animal body comprises of various systems. These 

body physiological functions coordinated and regulated centrally 
and peripherally by central nervous system and peripheral nervous 
system respectively. The Central Nervous System (CNS) consists 
of brain and spinal cord. This nervous system is complicated 
network of mechanism which is the central processing unit of an 
entire nervous system. The nervous system is made up of neurons 
and neuoglias. The neurons are a specialised cell with membrane 
ability to generating electrical impulses. Neuoglias are an abundant 
cell type than neuron in CNS which provides more supports for 
neurons. Our body system knows about the significance of these 
cells, so only brain and spinal cord are protected by armour cover 
of cranium and vertebral column. Because limited regenerative 
capacity of a neuronal cells [1].

The CNS injury is mainly divided into traumatic and non-
traumatic. Traumatic CNS is the largest causes of death and 
disability, leading to suffering by, and costs to, the individual, their 
family and society [2]. The traumatic spinal cord injury is a result 
of primary insult of mechanical injury and consequently leads to 
cascade of secondary injury mechanisms. The manifestation of 
spinal cord injury is comprising of motor, sensory and autonomic 
dysfunctions, which dysregulate body homeostasis. The 
complications are neurogenic shock, changes in cardiovascular 
haemodynamics, respiratory failure, bladder dyssynergia, muscle  
spsticity and wasting, anxiety, depression and sexual dysfunction.  

 
Diagnosis of spinal cord injury is appropriate and possible known 
well with the advancement of diagnostic imaging techniques. There 
are various therapeutic modalities encountered for treatment 
of traumatic spinal cord injury. The most of treatment strategies 
are mainly minimizing the progression of primary injury and 
preventing secondary injury mechanisms [3].

Spinal Cord Injury (SCI) Incidence
Spinal cord injury (SCI) regarding in humans, getting an 

accurate incidence and prevalence is difficult because most of the 
developing countries not having separate spinal injury trauma 
unit and lack of national data entry. Recent year’s spinal cord 
injury incidence rapidly increases due to modernisation and rapid 
industrialisation. Worldwide incidence expected to be 250000-
500000 cases every year [4]. In developing countries like India road 
accidents will be most disabling condition by 2020. Wide world 
the average prevalence of SCI estimated to be 1:1000 and mean 
incidence proposed to be 4 and 9 cases per one lakh population per 
year. Spinal cord injury is a globally still incurable medical ailment 
conditions associated with mild to extreme severe disability of 
motor-sensory, autonomic functions of the body. Although much 
development and research activities happening in medical field, 
neither complete cure of spinal cord regeneration nor restore 
the physiological functions. So, we need to extend research of 
preclinical study in order to translate to humans.
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Faithful Model of SCI
Rat is a faithful animal for neuroscience, behavioural research 

and regenerative research for preclinical studies. The greater size of 
rat provides much more advantages than mice especially borne to 
surgical procedures and in studies of spinal cord injury, where rat 
models have been higher translational value [5]. It is much easier 
to handle and less stressed by human approaches than mice [6]. In 
the recent decades gene based neuroscience research growing with 
mice but rat and mice show drastic differences in basic studies like 
cognition, addiction, impulsive, social behaviour and demonstrate 
differences in extent of neuroregeneration, demonstrating the 
significance of appropriate model for a human wisely [7], moreover 
SCI injury changes in rats are similar to humans [8]. Human spinal 
cord injury much more complex than experimentally produced rat 
models although anatomical differences of axonal tracts should be 
taken into account with human, Rat is to be convenient model of 
spinal injury due to low incidence of surgical affections and well-
established functional analysis techniques [9].

Type of Spinal Cord Injury Models in Rat
Still what we know about spinal cord injury pathophysiology 

mechanism is very little. So to know pathophysiological aspects of 
spinal cord injury and to evaluate CNS spinal cord regeneration, 
many model has been created for spinal cord injury related to 
interest [10], for example weight drop model that first described by 
Andrew [11], aneurysm clip compression [12], calibrated forceps 
compression [13], contusion [14], complete transaction model 
[15], excitotoxic model via chemically mediated [16], tractive model 
[17], epidural balloon inflation compression model [18], hemi-
transaction model [19]. This hemi transaction model commonly 
used to investigate nerve grafting in biomaterials research [20]. 
This partial transaction model simulates an injury more likely to be 
seen clinically than complete transaction and provides comparison 
between injured and healthy fibres in same animals [21]. This 
model relatively controlled injury environment, low morbidity, 
and the full transaction or crush injury models. Hence biomaterial 
scaffold, nerve grafting studies its being good model of choice [22].

Spinal Cord Injury Pathophysiology
Spinal cord injury is a mechanical insult from externally 

as a primary injury comprises of various mechanisms and 
degree of injury with compression, laceration, shearing and 
distraction followed by cascade of secondary injury from seconds 
haemorrhage, decreased ATP, lactate acidosis [23]. These in turn 
neuron inflammation leads to degeneration of neurons by reactive 
astrocytes and these reactive astrocytes forming a glial scar [24]. 
Astrocytes are double edged weapon or remedies, earlier days 
astrocytic glial scar is a major limitation in spinal cord regeneration 
by inhibitory molecules Chondroitin Sulphate Proteoglycans 
(CSPGS), but this is not only by astrocytes, other cellular products 
also [25] in the sense these scar form a boundary to avoid further 

neuronal damage. But it aids in CNS axon regeneration by expressing 
multiple axon growth support molecules [26]. Although intrinsic 
factor of neurons [27] and multiple growth inhibitory molecules 
limits axonal regeneration, mainly glial scar and Myelin Associated 
Inhibitory Proteins (MAIs). These MAIs include many notably 
Myelin Associated Glycoprotein (MAG), Oligodendrocyte Myelin 
Glycoprotein (OMgp), ephrin-b3, etc [28]. Glial scar containing 
CSPGs members are neurocan [29], versican v2 [30], brevican [31].

Conventional Therapy In SCI
Conventionally, clinically methylprednisolone, cox-2 inhibitors, 

vitamins, calcium channel antagonists, hormones like thyroid 
releasing hormone, nutritional supplements like selenium, zinc, 
and magnesium and anti-excitotoxic agents are used [32]. A 
major focus over years has been on methyl Prednisolone as a 
therapeutic agent for treatment of SCI in humans. Unfortunately, 
data available from different clinical trials are controversial and 
qualitative. In addition to above drug, none of the treatments such 
as TRH, opioid antagonist and free radical scavengers in preclinical 
and clinical studies have been proven to be a major advantage in 
treatment of SCI [33]. In the experimental level, biologically active 
peptide gamma 1 chain of laminin 1 promotes axonal guidance by 
neuron outgrowth factors promotion [34], anti-no-go-A blocking 
agents/antibodies 11c7, 7B12 increase regeneration, plasticity of 
the lesioned CNS by increasing cellular cAMP [35]. Cethrin is an 
inhibitor of Rho signalling pathway which is having neuroprotective 
and neuroregenerative properties [36]. Cordaneurin drug is a 
scar preventing substance approved for acute spinal cord injury 
by European Union-2004. Epherin A4 antagonist and apoptosis 
inhibitors (caspase inhibitors, potassium channel blockers 
(fampridine), Na channel blockers rizole, phosphor diesterase 
inhibitors involved in molecular interventional therapy of SCI [32].

Neurotrophins in SCI
Another approach of SCI therapy is borne to neurotrophins. It is 

the growth factor form the CNS, promotes the normal development 
and functional maintenance. Neurotrophins enhance neuronal 
survival, remyelination, axonal growth [37]. Notably brain derived 
neuronal factor [38], NT-3 and GDNF are contribute neuron survival 
with synaptic transmission, axon sprouting and remyelination 
respectively [39]. Neurotrophic Factors (NTF) having short half-life 
so exogenous delivery of NTF low efficacy due to blood brain barrier, 
so cell mediated delivery of NTF will be the ideal [40]. On the other 
hand, in the neurotrophies group, nerve growth factors also produce 
detrimental effect like hyperalgesia and chronic pain [41]. The 
consideration of advantages of neurotrophic factors various studies 
underwent like implantation of NT soaked gel foam with laminin, 
fibronectin, NT delivery by mini osmotic pumps [42], injection with 
recombinant virus mediated gene therapy with NT genes [43]. The 
disadvantage of neurotrophic is that proneurotrophins binds to 
p75 NTR receptor and leads to apoptosis of the cell [44].
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Cell Based Approaches in SCI
Cell based approaches in SCI mainly by two concepts (1) 

directly replace the cells lost due to injury (oligodendrocytes or 
neurons or meningial cells), (2) providing hospital environment 
in such a way that either enhance or aids axonal regeneration and 
provide neuroprotection [45]. Schwann cells myelinating glial cells 
of the Peripheral Nervous System (PNS). Peripheral nerve grafts 
transplantation is the evidence of Schwann cell support axonal 
regeneration of CNS neuron [46,47]. The Schwann cell transplants 
also enhances remyelination and support axon growth [48] 
but axons do not extend beyond growth permissive graft so the 
remyelination of spared demyelinated axons and no functionally 
meaning full synaptic connections [49] leads to doubtful about 
therapeutic utility of Schwann cell in humans. 

Schwann cell transplantation has neither neurological 
worsening nor improvement [50,51]. Olfactory ensheathing cell 
is a pluripotent olfactory nerve Schwann cell. This cell supports 
the axons leaves the olfactory epithelium and project through the 
PNS into olfactory bulb of CNS [52]. These olfactory unsheathing 
cells aids in axon regeneration and functional improvement in SCI 
rats [53]. This OEC does not form myelin [54], but it is creating 
environment for axonal growth and neurotrophic support [55,56]. 
Although in human study OECs failed to provide significant utilities 
[57]. Transplantation of olfactory bulb cells has been reported 
successful in 38-year-old SCI patient [58].

Stem Cell-Based Approaches In SCI
Stem cells are capable of prolonged self-renewal and having 

ability to differentiate into multiple cell types [59]. The stem cells 
in neurological therapy with great concern by its property mainly 
transplanting cells act as bridge at lesion area and scaffolding for 
regrowing fibres to rejoin via secreting growth and neurotrophic 
factors [60]. The stem cells also having neuroprotective ability 
by secreting certain substances like cytokines, growth factor and 
trophic factor; the true stem cell is a totipotent. Many researchers 
considered zygote is a true stem cell because they can differentiate 
into any cell in favourable medium it can make a whole organism 
[61,62]. Other than zygote, stem cells broadly taxonomized into 
two types-one is somatic stem cells which is undifferentiated cells 
among the differentiated cells of specific tissue population after 
birth [59] second one is Embryonic Stem Cells (ESCs) which is in the 
inner cell mass of blastocyst [63]. In spinal cord injury, engrafting 
of ESC-derived stem cell is a strategy with a unique property of 
stem cell especially appropriate combination of growth factors; it 
can be used to obtain neurons and glial cells [64]. As stated, earlier 
demyelination of an intact axon is a major sequence of SCI [65]. 
Remyelination is needed for locomotor improvement and restore 
the salutatory conduction of neuron [66]. 

Notably human embryonic stem cell derived oligodendrocytes 
progenitor cells transplant remyelination and restore locomotion 
after spinal cord injury [67]. The problem of ESC derived immature 

lineage cells is ability to induce teratoma after transplantation [68]. 
But with the high purity production of ESC derived cells it can limits 
the tumour inducing potential of ESC [69]. Neural Stem Cells (NSC) 
are multipotent, having ability to produce complete neural lineages 
[45]. The NSC is a remnant of neuroectoderm present in the brain 
and spinal cord. In adult the source of NSC cell is Sub Ventricular 
Zone (SVZ) lining the lateral ventricles and the Subgranular Zone 
(SGZ) within the Dentate Gyrus (DG) of the hippocampus and spinal 
cord [70], These NSC contributes the remyelination [71] and inturn 
improves axonal conduction. In a different study on human neural 
stem cell transplants is found effective for SCI in primates [72] the 
limitation of NSC is that obtaining cells [73]. Other approach is to 
stimulate endogenous NSC, but in vivo microenvironment not good 
to stimulate NSC regeneration [74]. Although ESC derived NSC/NPC 
is an exogenous source, obtaining high purity is a mater.

Another type of somatic stem cell widely studied is mesenchymal 
stem cells. There are various sources for mesenchymal stem cells 
likely Wharton jelly of umbilical cord [75], bone marrow derived 
mesenchymal stem cells [76] and Dental pulp [77]. Human 
Dental Pulp Derived Stem Cells (DPSCs) having neuroprotective, 
neroregenerative, neurotrophic support in preclinical study [78]. 
This neural crest originated DPSCs could be an ideal stem cell 
candidate for treating neurological and neurodegenerative diseases 
[79]. Although, no reports of clinical study in human spinal cord 
injury, transplantation of human immature dental pulp in spinal 
injured dogs showed improvement [80]. So many things have to take 
into account required stem cell density and availability, desirable 
strategies, for their use. For example, DPSCs or exfoliated deciduous 
tooth stem cells are not available throughout a patient’s lifetime. 
Stem cell banking can overcome that, it is time-consuming and 
costly limits their use in clinical applications [81]. Human umbilical 
cord blood and Wharton’s jelly isolated MSC transplantation 
reduces neuropathic pain [19] and improved sensory recovery [82] 
of SCI in rats. 

The limitation of human UC blood isolated MSC is maternal cell 
contamination which negatively influence the utilization of this 
material for cell-based therapy due to Graft-Versus Host Disease 
(GVHD) [83]. Adipose tissue derived mesenchymal stem cells are 
easily can harvest from abundant adipose tissue [84]. These MSC 
secretes neurotrophic factor [85] which aids neuroprotection in 
ischemic spinal cord injury [86]. Bone marrow derived mesenchymal 
stem cell is a currently widely using MSC in spinal cord injury 
and regeneration due to its wide variety of study reports [87]. It 
lacks tumorogenic potential [88], neuroprotective ability [89] 
through expression of various kinds mRNA related to neurotrophic 
factors [90], immunosuppressive by low expression of MHC anti-
inflammatory, aiding in axonal regeneration, endogenous stem cell 
activating property [91] unlike ESC no ethical problem and induce 
remyelination [92]. The BMSC administration is safe and feasible 
[93]. The limitation of MSC is that it needs substrate to attach which 
will improve survivability because anchorage dependant property 
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[94]. Hence MSC with scaffold increase survivability and overcome 
above stated limitation.

Stem Cells & Nerve Growth Factors (NGF) 

Another approach is stem cell and NGF. Advantage of this 
approach is that the stem cell secretes certain neurotrophic factors 
which are substantial neuronal recovery from spinal cord injury. 
Exogenous neurotrophic factor or over expressing NGF secreting 
cells are adding stem cell survivability [95,96] and helps in 
endogenous protective mechanism [97]. MSCs and NGF synergistic 
effect in promote axonal regeneration and improve functional 
recovery [98]. Limitation of this approach is that the injury site 
is not hospital environment for stem cell survival and attachment 
because injury site ECM related molecules and pathological state 
hampers advantage of this approach although various studies with 
significant results.

Biomaterial & Stem Cells + Nerve Growth Factors
Biological scaffold materials composed of Extra Cellular 

Matrix (ECM) which assists the constructive remodelling of many 
different tissues in both preclinical animal studies and in human 
clinical applications. The composition of the biological scaffolds 
consists of a complex mixture and paternally arranged molecules 
in unique three-dimensional (3-D that mediate structural and/
or biological properties patterns. So, it’s an ideally suited to the 
tissue from which the ECM is harvested [99]. For example, acellular 
sciatic nerve scaffold in spinal injury favours environment for axon 
regeneration, but alone showing insufficient axon regeneration and 
low locomotor recovery combination with BDNF showing benefits 
[100]. Notably acellular spinal cord seeded with mesenchymal stem 
cell improves robust long-distance axonal regeneration in spinal 
cord injured rodent study [101].

Conclusion
The spinal cord injury is a very complex mechanism so simply 

targeting a single mechanism does not give a good translational 
value. To improve the therapeutic strategies in spinal cord injury 
making lesion site like in vivo or mimic like environment by tissue 
engineering technology is focusing area. So the optimal multi-
disciplinary approach combining biomaterials, stem cells, and bio 
molecules offers a promising treatment for repairing the injured 
spinal cord [102]. From above review lack of combined therapeutic 
strategy are noticed regarding spinal cord injury strategy. Hence 
to fill the limitation, we hypothesis that the nerve growth factor 
enriched spinal cord tissue derived hydrogels combined with Stem 
Cell Therapy (MSC) may be good approach in treatment of spinal 
cord injury.
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