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ARTICLE INFO abstract

Ultrasound measurements have been used extensively throughout the literature as 
a reliable and valid method for examining muscle structure. More recently, ultrasound 
imaging has been used to guide the training process and it is often incorporated into 
ongoing athlete monitoring programs. However, most sport practitioners use ultrasound 
to assess muscle quantity (i.e., muscle size) yet muscle quality is often disregarded. Recent 
studies have begun differentiating between muscle quantity and muscle quality with the 
use of computerized grayscale analysis techniques using echo intensity. By using echo 
intensity, the sport practitioner is able to gauge both intramuscular and intermuscular 
cellular environments without having to use costly invasive procedures to determine 
markers of fatigue and training stress associated with muscle damage. Therefore, the 
purpose of this mini review is to highlight the efficacy of using echo intensity coupled 
with muscle cross-sectional area imaging to accurately assess training adaptations and 
recovery to, in turn, improve athletic performance.

Introduction

Sport practitioners (i.e., sport scientists, strength and 
conditioning coaches, sport coaches, and sports medicine staff) 
must implement appropriately planned annual training regimens, 
recovery strategies, and use both accepted and novel athlete 
monitoring protocols to continually progress athletic performance. 
Ultrasound measurements have been used extensively throughout 
the literature as a reliable and valid method for examining muscle 
structure and muscular adaptations as a result of resistance 
training [1]. Although this noninvasive method is comparable to 
other measurement methods such as magnetic resonance imaging 
[2], ultrasonography is the most practical, resourceful, and time 
efficient procedure for sport practitioners to implement regarding 
athlete monitoring. Ultrasound is most commonly used for 
measuring muscle quantity (i.e., muscle cross-sectional area [CSA]) 
[3]; however, when assessing only the size of the muscle, ultrasound 
instrumentation has limitations and cannot account for muscular 
hydration, glycogen content, triglyceride accrual, inflammation or 
edema (i.e., muscle swelling). More recently, echo intensity (EI) has 
been used to determine muscle quality (i.e., intramuscular fibrous 
and adipose tissue, noncontractile elements) and may give insight  

 
into the intramuscular and intermuscular cellular environments 
[4]. Therefore, monitoring skeletal muscle adaptations in relation 
to both muscle quantity and quality as a result of resistance 
training should be considered a mainstay for long-term athlete 
development [5]. Thus, the purpose of this mini review is to 
highlight the usefulness of incorporating EI as a sub-analysis of 
muscle CSA assessments for sport practitioners who currently 
implement ultrasound instrumentation as part of an ongoing 
athlete monitoring program. 

Most Common Usages for Ultrasound
For the general population, ultrasound has been used most 

commonly to assess injuries, mortality, disease, muscle quantity 
and muscle quality as it relates to strength and power [6-8]. For 
example, previous studies have shown that muscle quality of 
skeletal muscle was indicative of overall strength and power in 
healthy elderly individuals [9]. Additionally, positive correlations 
have been observed between torque per unit of muscle mass 
and cardiovascular parameters (r=0.52 to r=0.60; P < 0.001) 
giving insight into the potential use to assess neuromuscular and 
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cardiovascular performance. Echo intensity has been shown to 
independently contribute to muscle strength in both middle-aged 
and elderly persons and has shown the same contribution in the 
athletic population [10]. 

Contemporaneously, sport practitioners have used similar 
methods to specifically access muscle quantity to determine 
the effectiveness of periodization and programming as well 
as an athlete’s potential performance capability (i.e., talent 
identification) [11,12]. For example, in a squadron of track and field 
athletes ranging from throwers to distance runners, despite their 

high amount of body fat, the throwers ability to express strength 
and power was associated with the lowest EI values (63.4±5.2 
au) compared to athletes of other disciplines. Hirsch et al. [13] 
showed that when evaluating muscle characteristics in addition to 
body composition assessments EI would be valuable for detecting 
performance improvements, preventing injuries, and assessing 
potential health risks. Considering that muscle CSA has been shown 
to be indicative of performance regarding overall strength, power 
output, rate of force development, and jumping ability, EI seems to 
be a sufficient sub-analysis for sport practitioners to assess training 
adaptations and recovery across a broader spectrum (Figure 1). 

Figure 1:  Ultrasound vastus lateralis imaging and grayscale analysis software histogram output.
Note: Image A is a direct output from the ultrasound machine. Image B is the computer aided grayscale analysis software with 
the histogram output. CSA= muscle cross-sectional area; EI= echo intensity. Count corresponds to muscle CSA: 32457=32.457 
cm2. Mean corresponds to EI value: 64au.

Implementing the Sub-Analysis
By extracting the image produced from an ultrasound collection 

period, EI may be used to quantify the quality of the muscle using 
grayscale analysis that analyzes the pixel count which provides 
a score ranging from 0 to 256 au (0=black and 256=white) [8] 
(Figure 1). Across the grayscale spectrum, individuals with high 
muscle quality tends to be hypoechoic or closer to 0 [14] whereas 
those with poor muscle quality tend to be hyperechoic or closer 
to 256 [15]. This information is visually presented on the output 
system provided by a histogram display. A hypoechoic EI output 
would be associated with a high amount of lean body mass, ideal 
body composition, low inflammation and low edema or, acutely, an 
athlete in a recovered state with the histogram peaking towards the 
left [16]. A hyperechoic EI output would be associated with high-fat 
mass and poor body composition or possibly an acute physiological 
disturbance such as inflammation, increased creatine kinase from 
muscle breakdown, or edema (i.e., histogram peaking towards the 
right) [17]. 

Athlete Monitoring
Considering that muscle CSA is typically already analyzed for 

ultrasound imaging, sport practitioners may use a computerized 

grayscale analysis software to gather the desired information that 
includes the CSA and EI value for a given image simultaneously 
(Figure 1). Echo intensity may be used longitudinally for long-
term athlete monitoring (Figure 2) or for more frequent testing 
to observe an athlete’s acute training responses (Figure 3). This 
assessment would be most useful to compare muscle characteristic 
changes during preparatory training periods to competition 
preparation training periods [18]. Sport practitioners who use true 
periodized training models (i.e., annual planning) often incorporate 
athlete monitoring testing sessions throughout a given year [19]. 
Most frequently, these testing sessions occur at the beginning, 
in the middle, and at the end of an annual training year [20]. 
Sport practitioners may use an image transparency function for 
successive CSA and EI outputs to determine positive or negative 
shifts from the output diagram (e.g., Figure 2 shows an improvement 
in muscle quality). It is important to note, that ultrasound images 
are typically collected after 24-48 hours of rest or during active 
recovery periods [21] and should be collected in accordance with 
previously published methodology to acquire accurate results for 
both CSA and EI analyses (Figure 2).
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Figure 2: Echo intensity for longitudinal athlete monitoring.
Note: Sample output 3 represents a baseline measurement. 
Sample output 2 represents a mid-training cycle measure-
ment. Sample output 1 represents a final measurement 
post-training cycle.

Figure 3: Echo intensity for acute athlete monitoring.
Note: Sample output 1 represents training session 1. 
Sample output 2 represents training session 2 which may 
take place 1 week later.

From an acute perspective, the same image transparency 
function may be used from microcycle to microcycle (i.e., week to 
week) or bi-weekly to assess more frequent muscle alterations 
and adaptations [22]. In this case, muscle quantity outputs may 
be analyzed as a false-positive due to acute muscle swelling. 
Recently, Damas et al. [9] showed that the ratio of EI to muscle 
thickness at week three of a resistance training program was 
significantly altered relative to baseline due to edema rather than 
an actual improvement in muscle quantity or quality. Therefore, 
an acute change in the peak of the histogram shifting right may 
give insight into possible triglyceride accrual, water and glycogen 
retention, or overall muscle damage [23]. Sport practitioners may 
use this information to guide the training process to get a better 
understanding of how the athlete responds to specific training 
phases (i.e., accumulation, transmutation, realization) in relation 
to the total work accomplished and the time it takes for the local 
muscle to fully recover [24]. Acute hyperechoic values over a 
4-week mesocycle have been shown to mask the ability to produce 
force for maximal 1-repetition-maximum strength [25]. Therefore, 

acute EI values may guide sport practitioners’ decisions leading 
into a competition to ensure that athletes are adequately recovered 
to express peak levels of performance on the day of competition 
(Figure 3).

Conclusion
The evidence presented on this topic provides insight into the 

rationale behind incorporating EI into an ongoing athlete monitoring 
program, particularly for sport practitioners who already use 
ultrasound measurements. Although it is not as common, multisite 
ultrasound collection for upper and lower extremities (e.g., triceps 
and vastus lateralis) may be warranted to determine an upper-to-
lower extremity EI ratio to understand whole body muscle quality 
[26]. This information may aid in guiding the training process further 
in the case that if lower extremity acute EI is altered significantly, 
upper body training may be implemented and emphasized 
accordingly. Further, if an athlete’s muscle quantity improves 
but muscle quality does not change over the course of an annual 
training year, the sport practitioner should consider adjusting the 
training protocol to elicit the desired adaptions. However, it should 
be noted that further EI studies need to be carried out to ensure that 
EI outputs correspond to actual physiological changes taking place 
within muscle tissue to negate more expensive, costly procedures 
such as muscle biopsies or blood draws [27]. We advocate for sport 
practitioners to assess large muscles that are easily accessible and 
often examined throughout the literature (e.g., vastus lateralis) 
so that data-driven decisions may be made regarding training or 
practices changes. Incorporating EI does not require additional 
time for the athlete monitoring process to be carried out nor further 
analysis procedures; EI provides an additional variable to account 
for both intramuscular and intermuscular muscular environments 
in relation to overall recovery and adaption that, in turn, improves 
performance.
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