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ARTICLE INFO abstract

Abiotic stress, such as water deficit, is one of the most devastating factors hindering 
sustainable agricultural crop output today. Plants use their own defensive strategies to 
cope with the harmful effects of this stress. Silicon is generally considered as a significant 
element for the growth, development and biomass/ yield production of plants, especially 
for those grown under stressful environmental conditions. This study was conducted to 
assess the impact of Si on antioxidant and phytohormones of sugarcane during water 
deficit. Experiment arranged as a completely randomized block design (CRBD), was used 
to examine the effects of two irrigation levels (mild - 75 and severe stress - 30% of FC 
and six silicon concentrations consisting of 0, 194, 387, 581, 774 and 968mg Si kg-1 soil. 
Calcium metasilicate (CaO.SiO2) was used as a source of silicon. CaO.SiO2 addition also 
enhanced the activities of catalase, peroxidase, superoxide dismutase and phytohormones 
according to stress intensity and Si doses. The exogenous silicon plays a key role to tolerate 
water deficit in antioxidant enzymes base, thereby improving overall development and 
productivity. The results suggest that sugarcane cultivar GT42 is more tolerant to water 
deficit conditions because of more efficient antioxidant system.

Keywords: Antioxidant Enzymes; Calcium Metasilicate; Phytohormones; Saccharum spp.; 
Drought

Introduction
Most of the environmental variables drastically changed to the 

development of plants [1]. Among abiotic threats, water deficit is 
one of the special concerns. Water scarcity is a worldwide problem, 
and thus attracted more attention of the international scientific 
communities. It is most common in tropical and sub-tropical 
regions all over the globe and responsible for substantial decline 
in agricultural crop production. Also, water deficit is one of the 
most common stress responsible for the changes in morphological, 
physiological and metabolic activities of plants [2]. Changes in 
global climatic pattern has similarly escalate the time and period  

 
of various environmental factors, i.e. water deficit and maximum 
intensity of heat, with considerable yield loss in various plants [3]. 
Sugarcane plant tillering and major growth phages were critical 
stages of water sensitivity due to demand more water for sustainable 
plant growth [4]. Silicon (Si) serves as bioactive significant element 
for agriculture farming. The unlimited benefits of Si to agricultural 
crops are now well identified [5,6]. Silicon (28.8% of dry mass 
basis) is a main constituent of the Earth’s crust following O2 [2,7]. 

As early as the 19th century the significant impact of Si was 
apparent to plant biologists. At present many scientific experiments 
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have demonstrated that Si exhibits extraordinary benefits on plant 
developing stage unequalled by any other non-essential element 
[8]. Although the importance of this element to crop plants is 
still debated, there have been significant benefits for plants [9]. 
Additionally, awareness of the significant effects of supplementing 
plants with Si as a soluble form has evolved considerably [6]. 
Experiment into the effects of Si on plant resistance to environmental 
stresses such as biotic [10-12] and abiotic [13] stress has approved 
the findings of the responses of Si on physiological, molecular and 
ecological base [13-15]. In this research area is apparent in the 
number of recent scientific reports published on the mitigation of 
stress by the use of silicon [2,8,13,16-19]. 

In next coming era, there has been a great demand for bioenergy 
sources to replace fossil fuels [20]. Sugarcane (Saccharum spp.) is one 
of the economically important in the world for sugar and bioenergy 
production [21]. Sugarcane requires favorable environmental 
variables. Ensuring this water demand under field conditions has 
been a serious problem since mostly agricultural cultivated land 
areas suffering from seasonal stress [22]. Plant chemical changes, 
accumulation of compatible solutes and upregulate antioxidant 
enzyme activities have been observed as mechanisms or functions 
that allow plants to avoidance the decrease of water potential in soil 
[23,24]. The importance of antioxidant defense systems has been 
shown during water deficit conditions [20]. The objective of this 
experiment was to assess the water deficit tolerant mechanisms on 
antioxidant and plant hormones activities in sugarcane, therefore 
revealing the impact of silicon in the mitigation of stress hazards 

and enhancement of antioxidant enzymes and phytohormones.

Material and Methods

Growth Condition and Experimental Design

The experiment was conducted in a greenhouse at Sugarcane 
Research Center, Nanning, Guangxi, during October to December 
2018. Sugarcane (Saccharum spp. L.) plantlets were obtained from 
Sugarcane Research Center of Chinese Academy of Agricultural 
Sciences and Sugarcane Research Institute of Guangxi Academy 
of Agricultural Sciences, Nanning, Guangxi, China. Approximately 
45-day-old nursery plantlets were transfered into plastic pots 
(30cm in diameter, 35cm in depth), three plantlets per pot. The 
pots were filled with fertile soil (air dried) with organic manure, 
with basal dose of N, P and K (26.0, 1.76 & 20.0g pot-1), kept 
inside the greenhouse. The substrate elements were analyzed 
before transplant and treatment, pH-5.92, organic carbon-0.72%, 
P-9.18mg kg-1, K-2.71, Ca-4.1, Mg-1.6 and Na-0.083cmol (+) kg-1, 
respectively. Soil texture was sandy clay. The available content of 
Cu, Fe, Zn and Mn were 0.85, 12.1, 1.31 and 18.8mg kg-1. Experiment 
arranged according to completely randomized block design.

At 75-days after transplanting, thinning was performed, and 
two plants that exhibited the best well developed were selected. 
Soil moisture percent was measured by soil moisture meter (TDZ, 
Top Instruments Co. Ltd., Zhejiang, China). The weather parameters 
were recorded inside the greenhouse during experiment (Figure 
1; Table 1). Sugarcane plantlets were submitted (Table 2) to the 
following:

Table 1: Summary of site climate conditions.

Climatic Variables
Experimental Period -2018

May June July Aug. Sep. Oct. Nov. Dec.

Temperature 
(°C) Maximum 30.4 32.1 32.9 32.7 31.6 28.4 24.1 20.2

Minimum 22.8 24.9 25.4 25.2 23.6 20.2 15.3 11.3

Average 26.6 28.5 29.1 28.9 27.6 24.3 19.7 15.8

Air humidity 
(%) Average 80 82 82 82 78 75 74 73

Daylight (h) Average 13 14 13 13 12 12 10 11

Sunlight (h) Average 4.6 5.4 6.3 6.0 6.2 5.3 4.3 5.1

Table 2: Twelve treatments (WD × CaO.SiO2) designed in this study.

WD (%) CaO.SiO2 (mg kg-1 soil pot-1)

75 WD+0* WD+194 WD+387 WD+581 WD+774 WD+968

30 WD+0* WD +194 WD+387 WD+581 WD+774 WD+968

WD- water deficit, numbers indicate silicon levels
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Figure 1: Average soil moisture content (%) during experiment, monitored by Soil Moisture Meter (TZS), Top Instrument Co. 
Ltd., Zhejiang, China. Arrow indicate the days of measurement.

Samples of the middle third +1 of the leaf was collected midday 
at 18-days after rewatering. After washing and drying, immediately 
frozen in liquid nitrogen and stored at -80°C until analysis.

Proline content was determined according to Bates [25]. Plant 
samples were homogenized in sulphosalicylic acid (3% w/v) and 
centrifuged at 6000 g for 30 min (25°C). Two mL supernatant were 
mixed to 2 mL acid ninhydrin solution (ninhydrin-1.25g, glacial 
acetic acid- 30 mL, phosphoric acid 6M- 20mL) 2 mL glacial acetic 
acid and incubated at 100°C for 1 h and quick transferred to an 
ice bath. The absorbance was recorded at 520 nm, quantified by 
proline standard curve.

Antioxidant Enzyme Activities

Frozen samples were homogenized (2:1 buffer v/w) in a 
mortar with a pestle with 100 mM potassium phosphate buffer 
(pH 7.5) containing 1 mM EDTA, 3 mM DL-dithiothreitol and 
5% (w/v) insoluble polyvinylpyrrolidone. The homogenate was 
centrifuged at 1000 g for 30 min and the supernatant was stored 
at -80°C, prior to analysis. To determine the catalase activity [26], 
the samples were maintained at 4°C. The reaction was quantified 
using an UV-spectrophotometer for 1 min at 240 nm. The reaction 
medium contained 50 mM phosphate buffer (pH 7.8), 10 mM H2O2 
and 20 µL of the extract. The peroxidase activity was determined 
according to Nakano and Asada [27]. The reaction mixture used 
in the analysis consisted of 50 mM TFK buffer (pH 7.5), 0.1 mM 
H2O2, 0.5 mM sodium ascorbate and 25 µL enzyme extract. Record 
changes in absorbance of the reaction solution at 290 nm, every 15 
s for 1 min. The method described by Giannopolitis and Ries [28] 
with some modifications was used for the determination of SOD 
activity. The reaction medium contained (50 mM TFK, pH 7.8), 13 
mM methionine, 75 µM nitro blue tetrazolium, 0.1 mM EDTA, 2.0 
µM riboflavin and deionised water with 20 µL enzyme extract. One 
unit of SOD activity was defined as the amount of enzyme required 
to cause 50% inhibition of NBT photoreduction quantified at 560 
nm by UV-spectrophotometer.

Determination of Phytohormones and Silicon Content
1.0 g leaf samples were ground with an ice chilled mortar and 

pestle in 5 mL of methanol (80% v/v) extraction containing 1mM 
butylated hydroxytoluene as an antioxidant. The homogenate 
was kept for 12 h (4°C), centrifuged at 10,000 g (20 min), and the 
supernatant was collected. The contents of abscisic acid (ABA), 
indole-3-acetic acid (IAA) and gibberellins (GA3) were determined 
according to Yang et al. (2001). Silicon content was determined 
according to Wang [29] with slightly modifications. The fresh leaves 
were collected, washed and dried up to constant weight. 0.2 g of 
crushed leaves from each treatment was digested, using 7 mL of 
oxidizing solution (HNO3- 6 mL and H2O2-30%, v/v, 1 mL) for 30 
min (150°C for 10 and 180°C for 20 min). The digested samples 
were diluted with de-ionized water to final volume (100 mL) prior 
to analysis. The Si content was quantified by inductivity coupled 
plasma-optical emission spectroscopy, calibrated using standard 
solution.

Statistical Analysis
All data expressed as the mean ± standard error, analyzed using 

ANOVA by GraphPad Prism 8.0.1 software.

Results and Discussion
Variation in climatic parameters was recorded during study 

(Table 1). Air temperature and humidity inside the greenhouse 
were higher as compare to outside, respectively. With respect to 
these findings, proline content was found significantly higher in 
drought with Si as compare to stress without silicon. The higher 
proline content was increased upto 56.4% (75% of FC+774 mg Si) 
and 76.7% (30% of FC+581 mg Si) as compare to 75 and 30% of 
FC to free from Si amendment. The increasing trend was found in 
both stress situations with silicon. The content of proline further 
upregulated with Si application (Table 3). Proline, a universal 
osmoprotectant, acts as both an antioxidant and source of energy 
[30]. Proline is widely distributed in plants and accumulated in 
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more as compared to the other amino acids in stressed plants. 
The higher proline contents are the main function of the tolerance 
mechanisms to drought [31]. Similar findings reported in sunflower 
[32] and potato crops [33].

Effects of Silicon on the Activities of Antioxidative 
Enzymes

The activities of CAT, POD and SOD are given in Table 3. The 
variation of CAT activity was found in 75 and 30% of FC according 
to increasing levels of silicon. However, plants exposed to Si 
showed to significant upregulate as compare to without silicon in 
both stresses. In silicon treatment, CAT activity was found highest 

increment ca. 33 and 22%. With the progressing leaf development, 
catalase activity was also increased as relation to free from Si 
application. As per Table 3, the enhanced activity of POD was under 
mild and severe stress with Si treated plants in both conditions. 
Compared to the stress without Si element, POD activity was found 
significantly increased up to 50.7 and 62.1% under 75 and 30% of 
FC with 774 mg Si, respectively. Although stress caused an increase 
in the activity of SOD, it was higher in Si with mild and severe stress 
treatment as compare to without Si. Compared to 75 and 30% of 
FC, application of Si caused an increase such as 34.1 - 61.6 and 46.0 
- 88.9%.

Table 3: Specific activity of proline, catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) of sugarcane under water 
deficit conditions with silicon application at 60 days after treatment. The values represent the means of three biological replicates.

The Potency of CaO.SiO2 
(mg kg-1)

Proline Content (ng L-1) Water deficit (%)

75 30

Mean ± S.E. Percent of Control Mean ± S.E. Percent of Control

0 2111.26 - 3537.14 -

194 2405.28 13.93 2053.78 2.55

387 2347.8 11.18 2935.84 46.60

581 2778.88 31.60 2002.93 76.67

774 3302.81 56.42 2869.52 43.31

968 3249.75 53.91 2336.75 16.68

The Potency of CaO.SiO2 
(mg kg-1)

CAT (U mL-1)

Mean ± S.E. Percent of Control Mean ± S.E. Percent of Control

0 10.21 - 11.51 -

194 8.92 -12.63 8.46 -26.50

387 11.51 12.73 12.75 10.77

581 11.29 10.58 10.55 -8.34

774 13.62 33.40 14.03 21.89

968 10.21 - 10.18 -11.56

The Potency of CaO.SiO2 
(mg kg-1)

POD (mU L-1)

Mean ± S.E. Percent of Control Mean ± S.E. Percent of Control

0 22.89 - 19.18 -

194 25.70 12.29 27.50 43.38

387 32.89 43.69 30.34 58.19

581 31.30 36.74 30.97 61.47

774 34.50 50.72 31.09 62.10

968 24.92 8.87 22.17 15.59

The Potency of CaO.SiO2 
(mg kg-1)

SOD (U L-1)

Mean ± S.E. Percent of Control Mean ± S.E. Percent of Control

0 4306.39 - 3507.82 -

194 6274.28 45.70 5174.22 47.53

387 6005.38 39.46 6628.75 88.99

581 5777.22 34.16 5695.73 62.39

774 6958.77 61.59 5630.54 60.54

968 6469.85 50.23 5121.25 46.02

Note: - indicate decrease percent.
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Adaptation to water deficit may depend on various functions, 
including the capacity to maintain high levels of antioxidants and/
or through the induction of antioxidant enzyme activities. In this 
experiment, the CAT, POD and SOD enzymes were increased in 
the sugarcane plant leaves under stress, while such an upregulate 
was more beneficial and consistent in silicon application as 
compare to others. Similar results were reported in wheat crop 

[34]. However, the application of Si mitigates these harmful effects 
on plant development by up-regulating the antioxidant enzyme 
activities [35]. The reduction of oxidative damage through reduced 
production of reactive oxygen species and/ or enhanced activity of 
antioxidant metabolism appears to play major role in Si-induced 
abiotic stress mitigation [2,36-38].

Effects of Si on Phytohormones

Table 4: Effect of CaO.SiO2 addition on abscisic acid (ABA), indole-3-acetic acid (IAA) and gibberellic acid (GA3) of sugarcane plant 
leaves under water deficit condition.

The Potency of CaO.SiO2 
(mg kg-1)

ABA (µg L-1) Water deficit (%)

75 30

Mean ± S.E. Percent of Control Mean ± S.E. Percent of Control

0 193.90 - 191.80 -

194 254.75 31.61 245.16 28.27

387 235.57 21.76 201.40 5.24

581 356.67 84.46 286.83 49.74

774 416.92 115.54 333.89 74.35

968 304.51 57.51 229.27 19.90

The Potency of CaO.SiO2 
(mg kg-1)

IAA (pmol L-1)

Mean ± S.E. Percent of Control Mean ± S.E. Percent of Control

0 46.63 - 70.94 -

194 54.67 17.24 66.04 6.91

387 50.68 8.69 67.19 -5.29

581 41.19 -11.67 50.10 -29.38

774 47.52 1.91 56.79 -19.95

968 40.06 -14.09 52.42 -26.11

The Potency of CaO.SiO2 
(mg kg-1)

GA3 (pg ml-1)

Mean ± S.E. Percent of Control Mean ± S.E. Percent of Control

0 576.30 - 822.69 -

194 695.42 20.66 762.49 -7.30

387 529.69 -8.16 810.47 -1.46

581 505.76 -12.33 824.60 -0.24

774 695.71 20.66 846.87 2.92

968 516.23 9.89 756.51 -8.03

Note: - indicate decrease percent.

Impact of silicon on endogenous plant hormones are commonly 
assessed in response to stress situation. Our results showed that 
the activity of plant hormones such as abscisic acid (ABA), indole-
3-acetic acid (IAA) and gibberellic acid (GA3) were marginally 
increased and/or decreased in water deficit with silicon as compare 
to free from silicon (Table 4). The impact of exogenous silicon 
applied on endogenous phytohormone and their link to stimulatory 
Si effects on plants has received little attention to till date, and only 
few scientific reports have been published. In the study performed 
by Pei [39] also reported that Si enhanced abscisic acid in wheat 
cultivar during drought condition. These phytohormones, as 
studies generally indicate, serve to reinforce a plant’s capability 
to hold up against stresses [40,41]. Silicon element may enhance 

the plant tolerance to water stress by adjusting the levels of plant 
hormones [42,43].

The accumulation of Si in leaves were found increased (3.6 
- 58.2%) under mild and (3.8 - 55.3%) severe stress condition 
with silicon application (Table 5). Silicon has been extensively 
shown to enhance crop productivity and stress tolerance [44-46]. 
In this experiment, we found the CaO.SiO2 addition resulted in an 
improvement of overall plant development of stressed plants. The 
results summarized so far indicate that optimizing Si content in 
plants might be a promising strategy to enhance tolerance against 
various environmental stresses. Further studies are needed to 
explore, how silicon triggers the antioxidant defense system in 
sugarcane under water deficit condition.
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Table 5: Effect of CaO.SiO2 addition on the silicon distribution within sugarcane plant leaves under drought-stressed conditions. The 
data values represent the means of four biological replicates.

The Potency of CaO.SiO2 
(mg kg-1)

Silicon Content (mg kg-1 DW) Water Deficit (%)

75 30

Mean ± S.E. Percent of Control Mean ± S.E. Percent of Control

0 3.06 - 3.40 -

194 3.73 21.90 3.60 5.88

387 4.84 58.17 4.83 42.06

581 3.17 3.60 3.53 3.83

774 3.40 11.11 4.45 30.88

968 3.68 20.26 5.28 55.29
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