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Introduction

In the past few decades, cancer ranks as the most severe disease 
through uncontrolled cell growth, and it is a leading factor in death 
worldwide [1]. It is predicted that cancer deaths worldwide will 
reach more than 11.4 million [2,3]. So, the quantity demanded 
of anti-cancer drugs is sharp increasing all over the world. Sales 
of anti-cancer drugs have reached 36.4 billion US dollars and 
ranking the first among all kinds of medicines since 2010 [4]. 
Therefore, the prevalence of cancer and their resistance to the 
existing therapeutic agents necessitate the development of new 
medication that may overcome the limitation of existing drugs [5]. 
Leukemogenesis is induced through the emergence of neoplastic 
progenitors during hematopoiesis that subsequently undergoes 
clonal expansion leading to full- blown leukemia [6]. Leukemia 
contains four central subgroups: Chronic Myeloid Leukemia (CML), 
Acute Lymphoblastic Leukemia (ALL), and Chronic Lymphocytic 
Leukemia (CLL), Acute Myeloid Leukemia (AML) [7]. Midostaurin 
is the only FLT3 inhibitor approved by the FDA for the treatment of 
newly diagnosed FLT3-mutation AML in combination with systemic  

 
chemotherapy [8] and demonstrated antiproliferative activity in a 
range of solid tumor lines, including lung, colon, breast, melanoma, 
and glioblastoma [9]. Drug resistance has been the limiting factors 
in the success of available treatments for cancers, development of  
resistance to PKC412A has been described recently [10-12]. Here 
we synthesized an analog of midostaurin (PKC412), GZWM-060. 
Employing the cytotoxicity assay, we discovered that GZWM- 060 
had potent activity against leukemia cells, with minimal IC50 value. 
Therefore, we determine the mechanism of anti-cancer activity 
furtherly and found that the compound could exert higher effective 
against HEL cells growth than PKC412.

Material and Method

Reagents

Fetal bovine serum (FBS) was bought from the company 
HyClone (United State). Dimethyl sulfoxide (DMSO) was obtained 
from Sangon Biotech (Shanghai, China). Roswell Park Memorial 
Institute 1640 (RPMI-1640) and [3-(4, 5-dimethylthiazol- 2- yl)-
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ARTICLE INFO abstract

Leukemia is a highly heterogeneous cancer and hematologic malignancy with a poor 
survival rate in patients. Developing novel anti-leukemia drugs with better selectivity 
and lower toxicity is required for the treatment of patients. Here we demonstrated that 
compound GZWM-060, an analog of midostaurin (PKC412), could exert higher effective 
against HEL cells growth than PKC412. The compound had a strong ability to block HEL 
cells growth through arresting cell cycle at G2 phase, inducing apoptosis. Interestingly, 
the compound could induce HEL cells differentiation into erythrocytes. The study of the 
mechanism showed that the compound could increase pro-apoptotic protein BIM level 
and inhibit of p-STAT3 and the six individuals of the cluster miR-17-92 (miR17, miR18a, 
miR19a, miR19b, miR20a, miR92). Therefore, these results indicated that the compound 
might be a lead molecule for the development of new anti-leukemia drugs candidates by 
targeting p-STAT3/miR-17- 92/BIM signal pathway.
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2, 5-diphenyltetrazolium bromide] (MTT) were purchased from 
Sigma (Beijing, China). Annexin V-FITC Apoptosis Detection Kit 
was purchased from BD. TaKaRa, HiFiScript cDNA Synthesis Kit 
and UltraSYBR Mixture were purchased from TaKaRa (Beijing, 
China). Primers were prepared by Invitrogen (Shanghai, China). 
Other reagents were of analytical grade or guaranteed reagent-
commercial product and used without further purification unless 
otherwise noted.

Cell Culture
The human erythroleukemia cell line HEL was held by 

our laboratory. The cells were cultured in RPMI 1640 medium 
supplemented with 5% FBS at 37°C in a CO2 incubator (5% CO2 
and 95% air, 95% humidity). The cells were passaged twice weekly 
to maintain an exponential growth phase.

MTT Assay

The cytotoxicity assay was accomplished by MTT assay. The 
assay is based on the alteration or conversion of MTT dye into red 
formazan derivatives. Cell plated at the density of 8000 cells per 
well in a 96 well-plate and treated with GZWM-060 at different 
concentrations (0.15 to 1 µmol/L). In cell cytotoxicity assays, control 
groups were treated with either 1% DMSO without GZWM-060. 
After 72 hours of treatment, per well were added MTT solution 20 µl 
(5mg/mL) for 4 hours respectively. 96 well - plate were centrifuged 
in 2500 rpm with 15min, and discard the medium, then DMSO (150 
µl) was used to dissolve formazan crystals. The resulting solution 
was determined using absorbance at 490 nm (Thermo Scientific, 
Vario Skan Flash, USA). The growth curve of MTT was performed 
in 24, 48 and 72h. All experiments were carried out in triplicate 
and three independent tests. The percentage of cytotoxic activity 
compared to that of an untreated cell was determined as follows:

( ) ( ) ( )  %     –   /    –    100%Cell viability OD sample OD blank OD control OD blank= ×

Apoptosis Assay

Cell were seeded at 1×10 5 cells per 60 mm dish in 3 mL 
medium with different concentration of GZWM-060 (0.15 to 1 
µmol/L ), after grown 24, 48, 72h, the cell were harvested, washed 
3 times with ice-cold PBS and transferred into microcentrifuge 
tubes for centrifugation at 220g for 5min at room temperature, 

then re-suspended in Annexin-binding buffer and 5µL of FITC and 
PI (BD FITC Annexin V Apoptosis Detection Kit I) were added to per 
Eppendorf tube, cells were vortexed, incubated for 15 min at room 
temperature in dark. Cells were analyzed by flow cytometry on an 
ACEA Novo cyte 1000 (ACEA Biosciences Inc., San Diego, CA, USA), 
PI binds to DNA when the cell membrane is disrupted and AV binds 
to translocated phosphatidylserine on the outer surface of the cell 
membrane (early apoptosis signal). Percentage of early apoptotic 
and late apoptotic/necrotic cell populations were calculated using 
Nove Express software (version 1.2.1, ACEA Biosciences Inc., San 
Diego, CA, USA) and compared with appropriate controls.

Differentiation Marker Analysis

The expression of CD235a (an erythrocyte differentiation 
marker) antigen on the surface of HEL cells were measured by flow 
cytometry. Cells were plated in 60 mm dish in 3 mL medium at 
1×105 cells and exposed to different concentration of GZWM- 060 
(0.15 to 1µmol/L) for 24h. After treatment, cells were washed with 
PBS twice, then incubated with CD235a (CD235a-APC) for one h in 
the dark at 4°C. The cells were washed twice with PBS and finally 
resuspended in 200 µL PBS for measurement. CD235a expression 
levels were measured using flow cytometry (ACEA Biosciences Inc., 
San Diego, CA, USA).

Cell Cycle Measurement

HEL cells were seeded in 6-well culture plates at a density of 
1×10 5 cells in 2 mL medium and were treated with GZWM-060 for 
different concentration (0.15 to 1 µmol/L) for 18 and 24h. After the 
incubation, the cells were collected and transferred into a sterile 
centrifuge tube for cell cycle analysis. Cells were washed with pre-
cool PBS and suspended in 70% ice-ethanol, incubated 3~4 h at 
4°C and preserved in a refrigerator at -20°C overnight. To remove 
the stationary liquid, the cells were centrifuged and washed twice 
with cold PBS. Then, 500 µL mix dye solution (RNas eA 100µg/mL, 
PI 50 µg/mL, Triton X -100 0.2%) were added into each tube, gently 
mixed and incubated for 10 min at room temperature in the dark. 
Before analysis by using flow cytometry, the cells were washed with 
cold PBS, and 200 µl suspension were used analysis by a Novo Cyte 
flow cytometer (ACEA Biosciences, Inc., San Diego, CA, USA) using 
Novo Express 1.0.2 software. Each experiment was conducted three 
times.

Real-Time PCR Assays
Table 1: Nucleotide sequences of primers used for real-time RT-PCR.

Genes Forward Primer (5’-3’) Reverse Primer (5’-3’)

miR17 TCTATTTCAAATTTAGCAGGAAAAA AAGCACTCAACATCAGCAGG

miR18a GCAGTGAAGGCACTTGTAGC TGCAAAACTAACAGAGGACTGC

miR19a CCTAAGTGCTCCTTCTGGCA CCAGGCAGATTCTACATCGAC

miR19b TGTAGAACTCCAGCTTCGGC ACACAGCATTGCAACCGAT

miR20a TGTCGATGTAGAATCTGCCTG CAAACCTGCAAAACTAACCATAGA

miR92 TGGTAGTGAAAAGTCTGTAGAAAAGT CATGTATCTTGTACATTTAACAGTGGA

GZWM-060 treated GZWM-060cells in different concentration 
(0.15 to 1µmol/ L) for 16 h, cells were collected. Total RNA was 
extracted by Trizol reagent according to the manufacturer’s 

instructions (Invitrogen, Carlsbad, CA) and quantified using a 
Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, 
USA). Complementary DNA was synthesized in a 20μl reaction 
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containing one μg of total RNA, using PrimeScript™ RT reagent Kit 
(Takara Bio Group) according to the manufacturer’s instructions. 
To examine the quality, the cDNA was amplified by the beta-actin 
gene using the Taq Master Mix (Tiangen Beijing, China), and 1% 
agarose gel electrophoresis was performed. Subsequently, to 
determine the mRNA levels of miR17, miR18a, miR19a, miR19b, 
miR 20a, miR 92, qRT-PCR was performed by using SYBR Green 
qPCR Master, the quantitative analysis of the change in expression 
levels was calculated by ABI 7300 real-time PCR machine (Applied 
Biosystems, Carlsbad, CA), the cycling condition was as follows, 
95 °C for 15 min followed by 40 cycles of 95 °C for 30s and 60°C 
(primer TM) for 30s, 72°C for 60s. All data were controlled for 
the quantity of RNA input by performing measurements on the 
endogenous reference gene β-actin. As well as, RNA results from 
treated samples were normalized to results obtained using RNA 
from the control. An average of three experiments each performed 
three times with standard errors is presented. Primer quality was 
analyzed by dissociation curves. Primer sequences are listed in 
Table 1. Data were analyzed by comparing Ct values.

Western Blot Analysis
Cells were treated by GZWM-060 in different concentration 

(0.15 to 1 µmol/L) for 18 h, cells were extracted and total protein 
was collected from cells in RIPA lysis buffer. Protein’s concentration 
was determined by the level of protein BCA test kit (Solarbio 
life sciences, China), and proteins were separated by 10% SDS-
PAGE, then blotted onto PVDF membrane (0.22 µm, Merck KGaA, 
Germany). The membranes were incubated in solution with 3% 
BSA (dissolved in TBST) at room temperature for 1h and probed 
with primary antibodies STAT3(1:1000), p-STAT3(1:1000), Bim 
(1:1000), and GAPDH (1:2000) at 4°C overnight. After washing 
with TBST 3 times, the membrane was incubated with secondary 
antibody. Finally, immunoreactive protein signals were detected 
using the Odyssey Infrared Imaging System. GAPDH was used as 

an internal loading control. Shown are representative data from 
individual experiments that were repeated at least twice.

Statistical Analysis

Experimental data were valued by a mean ± standard deviation 
of three independent assays. All tests were carried out three times. 
An independent test was conducted for comparison between 
groups. Statistical significance was determined using Student’s 
t-tests. Statistically different values were defined significant at *P < 
.05, **P < .01, and ***P < .001.

Results
Cytotoxic Effects of The Compound GZWM-060 On HEL 
Cells

Midostaurin (PKC412), a semi-synthetic derivative of 
staurosporine has a strong ability to kill leukemia cells in patients 
with positive oncogenic FLT3. To obtain more effective candidates’ 
drugs for the treatment of leukemia patients. We synthesized 
many compounds from the skeleton of PKC412 and evaluated the 
cytotoxicity of these compounds on the human leukemia cell line 
(HEL) by using MTT assay. The observed results demonstrated that 
the GZWM-060 showed strong anti-cancer activity against HEL. 
(Table 2) The observed IC50 value of GZWM-060 against HEL was 
0.3558±0.0673 µM (72h), and the IC50 value of the positive drug 
PKC412 against HEL was 0.6638±0.3667 µM (72h). To observe 
whether GZWM-060 could inhibit the growth of HEL cells in a 
dose- and time-dependent manner, the HEL cells were treated with 
different concentration of GZWM-060 (0.15, 0.3, 0.5, 1, 3 µmol/L) 
and incubated for different time periods at 24, 48, 72h in three 
independent assays to detect the cell viability. The results showed 
that the compound GZWM-060 could inhibit HEL growth in a dose-
and time-dependent manner. Interestingly, the compound exerted 
higher effective against HEL cells growth than PKC412 (Figure 1).

Figure  1:  The inhibition rate to HEL cell. 
A. The chemical structure of PKC412; 
B. The dose-time– response curve of the HEL cell line derived from MTT cytotoxicity assay performed; 
C. Morphological changes of the leukemia cell line of HEL treatment with different concentration of GZWM-060 in 72h. Data 
are presented as mean ± standard error (n=3).
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Table 2: The Inhibition rate of GZWM-060 to HEL cell.

Inhibition Rate (%)

Concentration(µmol/L) 24h 48h 72h

0.15 0 3.22±0.138 21.08±0.080

0.3 0 34.95±0.027 49.53±0.087

0.5 0 38.45±0.082 55.20±0.103

1 7.25±0.144 55.64±0.040 65.63±0.033

3 14.24±0.028 63.82±0.021 71.70±0.029

response curve of the HEL cell line derived from MTT cytotoxicity 
assay performed; C. Morphological changes of the leukemia cell 

line of HEL treatment with different concentration of GZWM-060 in 
72h. (Table 3) Data are presented as mean ± standard error (n=3).

Table 3: The Inhibition rate of PKC412 to HEL cell (72h).

Concentration (µmol/L)                                       Inhibition Rate (%)

0.3 21.59±0 .210

0.5 59.46±0 .042

1 62.55±0 .050

3 73.93±0 .038

5 76.60±0 .027

The Compound GZWM-060 Induced HEL Cells Apoptosis
Apoptosis is central to block cancer cells growth. To study 

whether the compound GZWM-060 block HEL cells growth through 
inducing apoptosis, the effects of GZWM-060 on cell apoptosis were 

investigated by flow cytometry after staining with Annexin V and 
propidium iodide. The results showed that the treatment with 
GZWM- 060 for 24 h, 48 h, 72 h significantly induced apoptosis in 
HEL cells in a dose- and time-dependent manner (Figure 2).

Figure 2: The apoptosis result of HEL cell in different time at different concentration of GZWM- 060 (0.15–1µmol/L). 
A.	 The apoptosis result of HEL cell in 24h 
B.	 The apoptosis result of HEL cell in 48h 
C.	 The apoptosis result of HEL cell in 72h

http://dx.doi.org/10.26717/BJSTR.2019.17.002944


Copyright@: Yanmei Li | Biomed J Sci & Tech Res| BJSTR. MS.ID.002944.

Volume 17- Issue 1 DOI: 10.26717/BJSTR.2019.17.002944

12516

The Compound GZWM-060 Induced HEL Cells 
Differentiation into Erythrocytes the Induction of 
Terminal Differentiation in Cancer Cells Is A Central Way 
to Arrest

cancer cells growth. The human erythroleukemia cell line (HEL) 
is an established model to study erythroid and megakaryocytic 
differentiation in response to small molecular stimulation in vitro 

[13]. To determine whether the compound GZWM-060 block cells 
growth through inducing differentiation in HEL cells. As a result, 
the flow cytometric analysis demonstrated that the expression of 
CD235a (an erythrocyte differentiation marker) of the HEL cell 
was increased after treatment with GZWM-060. Therefore, the data 
exposed that GZWM-060 might have a substantial effect on inducing 
HEL cells differentiation, and the up-regulation of differentiation 
marker present a dose-independent manner (Figure 3A).

Figure 3: The results of flow cytometry. 

A.	 The differentiation results of CD235a in HEL cell at different concentration of GZWM-060 (0.15–1µmol/L. 

B.	 The cell cycle result of HEL cell in different time (18h, 24h) at different concentration of GZWM-060 (0.15–1µmol/L).

The Compound GZWM-060 Arrested HEL Cell Cycle

To identify whether the growth inhibitory effect of HEL cells 
caused by specific disruption of the cell cycle-related event, the cell 
cycle phase distributions was measured using a flow cytometric 
analysis. HEL cells were treated with GZWM-060 at different 
concentration for 18 h and 24 h. The observations revealed the 
number of cells in the G1 phase significantly decreased in both cell 
lines, and the G2 phase significantly increased, which exerted a 
dose-independent manner (Figure 3B).

The Compound GZWM-060 Inhibited the Expression of 
Mir-17-92

MiR-17-92 plays a vital role in activating cancer cells 
proliferation [14]. To evaluate whether the compound GZWM-060 
inhibit the expression of miR-17-92 in HEL cells, the expression of 

miR-17-92 was analyzed in HEL cells treated with the compound 
GZWM-060 by using qRT-PCR. miR17, miR18a, miR19a, miR19b, 
miR20a, miR92 were significantly down-regulated after treated 
with GZWM-060 compared with DMSO control group (Figure 4A).

The Effects of The Compound GZWM-060 on Proteins of 
Down or Up-Stream of Mir-17-92

Our previous work indicated that STAT3 could enhance the 
expression of miR-17- 92 by binding its promoter, and BIM is a target 
of miR-17-92 [15]. BIM and p-STAT3 are the critical regulators of 
apoptosis and cell cycle proteins. To validate the effects of GZWM-
060 on p-STAT3 and BIM protein levels in HEL cells, we examined 
protein levels of BIM and p-STAT3 by using western blot. The 
results showed that the protein level of BIM was up-regulated, but 
the p-STAT3 level was down-regulated in HEL cells treated with the 
compound GZWM-060 (Figure 4B).
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Figure 4: The result of Qrt-PCR and western blot.  
A. The expression level of miR17-92 IN HEL cell with different concentration of GZWM-060 (0.15-0.5μmol/L; 
B. The expression level of protein with different concentration of GZWM-060 (0.15-0.5μmol/L).

Discussion
To meet the continuous demand, a constant and sufficient 

supply of anticancer drugs is essential. Although many compounds 
possess anticancer effects, the underlying molecular mechanisms 
remain to be established. PKC 412 was first synthesized in 1986 
[16] and was initially developed as a small molecular inhibitor of 
protein kinase C (PKC) [17]. Studies to investigate its potential 
as a PKC inhibitor revealed that it inhibited cell proliferation by 
interfering with cell-cycle activity [18,19]. Understanding the anti-
tumor activity of mechanism can facilitate the foundation of a new 
target for treatment. In our study, we synthesized the compound 
GZWM-060 from the skeleton of PKC412 and found that GZWM-
060 could inhibit cells proliferation and exerts cytotoxicity against 
human leukemia HEL with an IC50 value of 0.3558±0.0673 µM. 
Further studies indicated that GZWM-060 induced apoptosis and 
arrested the cell cycle in leukemia cell, promoted the differentiation 
into erythrocytes. These results showed that GZWM-060 might 
be a lead molecule for the development of new anti-cancer drugs 
candidates. 

Apoptosis is a highly synchronized and conserved cellular 
phenomenon maintained by a highly organized network of intrinsic 
cellular suicide machinery. When the homeostasis between cell 
proliferation and death is disturbed, apoptosis-inducing pathways 
are altered, which results in oncogenesis [20]. The induction 
of apoptosis in cancer had been identified as a target for the 
treatment of cancer [21, 22]. There have two distinct signaling 
pathways of apoptosis, the intrinsic or mitochondrial pathway, and 
the extrinsic or death receptor pathway [23, 24]. The regulation 
of these apoptotic mitochondrial events occurs through members 

of the Bcl-2 family of the protein [25] and is classified into one 
anti-apoptotic and two pro-apoptotic groups, which BIM belong 
to the pro-apoptotic proteins [23]. The western blot results 
show that the molecular mechanism of apoptosis induction by 
GZWM-060 includes modulation of the protein expression of 
BIM. BIM-induced apoptosis is critical for the development and 
homeostasis of immune cells [26]. In the past decade, BIM has 
been recognized as an essential pro-apoptotic protein for initiating 
the intrinsic apoptotic pathway under many physiological and 
pathophysiological conditions [27], De Bruyne discovered that BIM 
promoter acetylation was linked to increased BIM expression in 
multiple myeloma and aggravated apoptosis [28].

 The western blot experiments revealed that p-STAT3 was 
inhibited by GZWM-060, with exposure to GZWM-060 at 0.15, 
0.3 and 0.5µM, the level of phosphorylated STAT3 (p -STAT3) 
was decreased compared to the untreated group. The reduced 
expression of p-STAT3, as well as increased cell apoptosis, 
presented themselves in a time and concentration-dependent 
manner. Progression by the cell cycle phases (G1, S, G2, M) is under 
the control of a family of serine/threonine protein kinases [29]. BIM 
plays a vital role in the regulation of cell cycle. Activating BIM lead 
to cells growth inhibition at specific stages in the cell cycle [15]. The 
anti-proliferative activity of GZWM-060 also involves an increase 
in BIM protein level, which disruption of cell cycle process plays 
a role in the anti-oncogenic. BIM also binds to and represses the 
transcription factor signal transducer and activator of transcription 
3 (STAT3), thereby inhibiting cytokine-stimulated and STAT3- 
dependent gene expression [30], that consistent with our results. 
The family of STAT protein includes seven transcription factors: 
STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6 [31]. 
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STAT3 has been noticed as one of the critical factors for tumors 
formation [32] and has a crucial role in breast cancer initiation [33]. 
In natural cells, STAT3 activation is tightly controlled, but activated 
STAT3 (p-STAT3) has been identified in many kinds of human tumor 
samples and cancer cell lines, which indicates it plays a pivotal 
role in the process of tumor development [34]. Recent studies 
have demonstrated that p-STAT3 overexpression is associated 
with poorer prognosis in patients with some cancer [35-37], and 
some studies indicated that p-STAT3 enters into the nucleus and 
promotes cell proliferation, drug resistance and suppresses tumor 
cell apoptosis [38,39]. MicroRNAs are types of small non-coding 
RNAs whose mature products are ~22

nucleotides long, which get involved in various biological 
processes including the cell cycle, differentiation, growth, and 
development, metabolism, aging and apoptosis [40,41]. In 2005, He 
et al. first discovered the miR-17-92 cluster, an oncogenic gene in 
human B‑cell lymphomas [42]. The miR‑17‑92 cluster is a typical 
highly conserved polycistronic miRNA cluster, which is located in 
the human chromosome 13, encoding six mature miRNAs, including 
miR‑17, miR‑18a, miR‑19a, miR‑19b, miR‑20a and miR‑92a [43].

 MiR-17-92 play an essential role in both the apoptotic and cell- 
proliferation pathways [44,45]. Jack’s lab showed that deletion of 
miR-17-92 could induce up-regulation of the pro-apoptotic protein 
BIM by using miR-17-92 knockout mice [46]. Li et al. discovered 
that miR-17-92 could activate BIM when they knocked down miR-
92, cell cycling was arrested at G1/S via up-regulation of BIM [15]. 
Besides, it has been demonstrated that the miR-17-92 cluster can 
inhibit the expression of the tumor suppressor and the apoptotic 
gene BIM in lymphoma [47]. In our study, the result of qRT-PCR 
indicated that the expression of miR17-92 down-regulation by 
GZWM- 060 and western blot showed that both of the expression 
of BIM was increased, so GZWM-060 maybe as a drug candidate by 
targeting to the STAT3/miR-17-92/BIM signal pathway.
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